Энергия связи ядра. Атомное ядро

Абсолютно любого химического вещества состоит из определенного набора протонов и нейтронов. Они удерживаются вместе благодаря тому, что внутри частицы присутствует энергия связи атомного ядра.

Характерной особенностью ядерных сил притяжения является их очень большая мощность на сравнительно маленьких расстояниях (примерно от 10 -13 см). С ростом расстояния между частицами ослабевают и силы притяжения внутри атома.

Рассуждение об энергии связи внутри ядра

Если представить, что имеется способ отделять по очереди от ядра атома протоны и нейтроны и располагать их на таком расстоянии, чтобы энергия связи атомного ядра переставала действовать, то это должно быть очень тяжелой работой. Для того чтобы извлечь из ядра атома его составляющие, нужно постараться преодолеть внутриатомные силы. Эти усилия пойдут на то, чтобы разделить атом на содержащиеся в нем нуклоны. Поэтому можно судить, что энергия атомного ядра меньше чем энергия тех частиц, из которых оно состоит.

Равна ли масса внутриатомных частиц массе атома?

Уже в 1919 году исследователи научились измерять массу атомного ядра. Чаще всего его «взвешивают» при помощи особых технических приборов, которые получили название масс-спектрометров. Принцип работы таких приборов состоит в том, что сравниваются характеристики движения частиц с различными массами. При этом такие частицы имеют одинаковые электрические заряды. Подсчеты показывают, что те частицы, которые обладают разными показателями массы, двигаются по различным траекториям.

Современные ученые выяснили с большой точностью массы всех ядер, а также входящих в их состав протонов и нейтронов. Если же сравнить массу определенного ядра с суммой масс содержащихся в нем частиц, то окажется, что в каждом случае масса ядра будет больше, чем масса отдельно взятых протонов и нейтронов. Эта разница составит приблизительно 1% для любого химического вещества. Поэтому можно сделать вывод, что энергия связи атомного ядра - это 1% энергии его покоя.

Свойства внутриядерных сил

Нейтроны, которые находятся внутри ядра, отталкиваются друг от друга кулоновскими силами. Но при этом атом не распадается на части. Этому способствует присутствие силы притяжения между частицами в атоме. Такие силы, которые имеют природу, отличную от электрической, называются ядерными. А взаимодействие нейтронов и протонов называется сильным взаимодействием.

Вкратце свойства ядерных сил сводятся к следующим:

  • это зарядовая независимость;
  • действие лишь на коротких расстояниях;
  • а также насыщаемость, под которой понимается удерживание друг около друга лишь определенного количества нуклонов.

По закону сохранения энергии, в тот момент, когда ядерные частицы соединяются, происходит выброс энергии в виде излучения.

Энергия связи атомных ядер: формула

Для упомянутых вычислений используется общепринятая формула:

Е св =(Z·m p +(A-Z)·m n -M я )·c²

Здесь под Е св понимается энергия связи ядра; с - скорость света; Z -количество протонов; (A-Z ) - число нейтронов; m p обозначает массу протона; а m n - массу нейтрона. M я обозначает массу ядра атома.

Внутренняя энергия ядер различных веществ

Чтобы определить энергию связи ядра, используется одна и та же формула. Вычисляемая по формуле энергия связи, как ранее уже было указано, составляет не более 1% от общей энергии атома или энергии покоя. Однако при детальном рассмотрении оказывается, что это число довольно сильно колеблется при переходе от вещества к веществу. Если попробовать определить его точные значения, то они будут особенно различаться у так называемых легких ядер.

Например, энергия связи внутри водородного атома составляет ноль, потому что в нем находится лишь один протон.Энергия связи ядра гелия будет равна 0,74%. У ядер вещества под названием тритий это число будет равно 0,27%. У кислорода - 0,85%. В ядрах, где находится порядка шестидесяти нуклонов, энергия внутриатомной связи будет составлять около 0,92%. Для атомных ядер, обладающих большей массой, это число будет постепенно уменьшаться до 0,78%.

Чтобы определить энергию связи ядра гелия, трития, кислорода, или же любого другого вещества, используется та же формула.

Типы протонов и нейтронов

Основные причины подобных различий могут быть объяснены. Ученые выяснили, что все нуклоны, которые содержатся внутри ядра, делятся на две категории: поверхностные и внутренние. Внутренние нуклоны - это те, что оказываются окружены другими протонами и нейтронами со всех сторон. Поверхностные же окружены ими лишь изнутри.

Энергия связи атомного ядра - это сила, которая выражена больше у внутренних нуклонов. Нечто подобное, кстати, происходит и при поверхностном натяжении различных жидкостей.

Сколько нуклонов помещается в ядре

Выяснено, что количество внутренних нуклонов особенно мало у так называемых легких ядер. А у тех, что относятся к категории самых легких, практически все нуклоны расцениваются как поверхностные. Считается, что энергия связи атомного ядра - это величина, которая должна расти с количеством протонов и нейтронов. Но даже такой рост не может продолжаться до бесконечности. При определенном количестве нуклонов - а это от 50 до 60 - приходит в действие другая сила - их электрическое отталкивание. Оно происходит даже независимо от наличия энергии связи внутри ядра.

Энергия связи атомного ядра в различных веществах используется учеными для того, чтобы высвободить ядерную энергию.

Многих ученых всегда интересовал вопрос: откуда возникает энергия, когда более легкие ядра сливаются в тяжелые? На самом деле, данная ситуация аналогична атомному делению. В процессе слияния легких ядер, точно так же, как это происходит при расщеплении тяжелых, всегда образуются ядра более прочного типа. Чтобы «достать» из легких ядер все находящиеся в них нуклоны, требуется затратить меньше количество энергии, нежели то, что выделяется при их объединении. Обратное утверждение также является верным. На самом деле энергия синтеза, которая приходится на определенную единицу массы, может быть и больше удельной энергии деления.

Ученые, исследовавшие процессы деления ядра

Процесс был открыт учеными Ганом и Штрасманом в 1938 году. В стенах Берлинского химического университета исследователи открыли, что в процессе бомбардировки урана другими нейтронами, он превращается в более легкие элементы, стоящие в середине таблицы Менделеева.

Немалый вклад в развитие этой области знания внесла и Лиза Мейтнер, которой Ган в свое время предложил изучать радиоактивность вместе. Ган разрешил Мейтнер работать лишь на том условии, что она будет проводить свои исследования в подвале и никогда не станет подниматься на верхние этажи, что было фактом дискриминации. Однако это не помешало достичь ей значительных успехов в исследованиях атомного ядра.

Энергия связи

энергия связанной системы каких-либо частиц (например, атома), равная работе, которую необходимо затратить, чтобы разложить эту систему на бесконечно удаленные друг от друга и не взаимодействующие между собой составляющие ее частицы. Является отрицательной величиной, т. к. при образовании связанного состояния энергия выделяется; ее абсолютная величина характеризует прочность связи (например, устойчивость ядер). Согласно соотношению Эйнштейна, Э. с. эквивалентна дефекту масс (См. Дефект масс) Δm : ΔЕ = Δmc2 (с - скорость света в вакууме). Значение Э. с. определяется типом взаимодействия частиц в данной системе. Так, Э. с. ядра обусловлена сильными взаимодействиями (См. Сильные взаимодействия) нуклонов в ядре (у наиболее устойчивых ядер промежуточных атомов она Энергия связи8 10 6 эв на 1 нуклон - удельная Э. с.). Она может выделяться при слиянии легких ядер в более тяжелые (см. Термоядерные реакции), а также при делении тяжелых ядер, что объясняется уменьшением удельной Э. с. (см. Ядерные реакции) с ростом атомного номера.

Э. с. электронов в атоме или молекуле определяется электромагнитными взаимодействиями (См. Электромагнитные взаимодействия) и пропорциональна для каждого электрона ионизационному потенциалу (См. Ионизационный потенциал), для электрона атома и в нормальном состоянии она равна 13,6 эв. Этими же взаимодействиями обусловлена

Э. с. атомов в молекуле и кристалле (см. Химическая связь). Э. с. при гравитационном взаимодействии обычно мала, но для некоторых космических объектов ее величина может быть значительной (см., например, «Черная дыра» (См. Чёрная дыра)).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Энергия связи

Энергия связи служит мерой прочности любой химической связи. На разрыв химической связи необходимо затратить энергию, равную по величине той энергии, которая выделилась при образовании химической связи.

Количество энергии, выделяющейся при образовании молекулы из атомов , называют энергией образования связи илипросто энергией связи.

Энергию связи выражают в кДж/моль, например:

Н + Н ® Н 2 + 435 кДж.

Естественно, столько же энергии необходимо затратить и для разрыва химических связей в 1 моль водорода. Следовательно, чем больше энергия связи, тем связь прочнее. Например, Е­ СВ (Н 2) = 435 кДж/моль, а Е СВ (N 2) = 942 кДж/моль. И, действительно, связь в молекуле азота (как показано ранее, тройная) значительно прочнее связи в молекуле водорода.

Разрыв связи может быть осуществлен гомолитически (с образованием нейтральных атомов) и гетеролитически (с образованием ионов), причем энергия разрыва может различаться.

NaCl (г) = Na (г) + Cl г – 414 кДж


Для однотипных молекул длина химической связи также может служить характеристикой прочности связи: ведь чем меньше длина связи, тем больше степень перекрывания электронных облаков.

Так, длина связей ℓ (HF) = 0,092 нм и ℓ (HJ) = 0,162 нм свидетельствуют о большей прочности связи в молекуле фтороводорода, что подтверждается на практике.

Следует отметить, что экспериментально определяемые длины связей характеризуют лишь среднее расстояние между атомами, поскольку атомы в молекулах и кристаллах совершают колебания около положения равновесия.

Перекрывание электронных облаков, приводящее к образованию химической связи, возможно лишь при их определенной взаимной ориентации. Область перекрывания также расположена в определенном направлении к взаимодействующим атомам. Поэтому говорят, что ковалентная химическаясвязь обладает направленностью. При этом могут возникать связи 3 видов, которые называют s- (сигма), p- (пи) и d- (дельта) связями.

В рассмотренных выше случаях образования молекул Н 2 и Cl 2 перекрывание электронных облаков происходит вдоль прямой, соединяющей центры атомов. Ковалентная связь, образующаяся в результате перекрывания электронных облаков вдоль линии, соединяющей центры атомов, называется s-связью. s-связь образуется (рис. 3) при перекрывании s – s – облаков (например, Н 2), р х – р х – облаков (Cl 2), s – p x (HF).


Рис. 3. s-связи в молекулах Н 2 (а), Cl 2 (б), HF (в)

При взаимодействии р-электронных облаков, ориентированных перпендикулярно оси, соединяющей центры атомов (р у – и р z – облака) образуются две области перекрывания, расположенные по обе стороны от оси. Такое положение отвечает образованию p- связи.

p-связь – это связь, для которой связывающее электронное облако имеет плоскость симметрии, проходящую через атомные ядра.

p-связь не существуют сами по себе: они образуются в молекулах, уже имеющих s-связи, и приводит к появлению двойных и тройных связей.

Так, в молекуле N 2 каждый атом азота обладает тремя неспаренными

2р – электронами. По одному облаку от каждого атома азота участвует в образовании s-связи (р х – р х - перекрывание).

Облака же р у – и р z – направленные перпендикулярно линии s-связи, могут перекрываться между собой лишь боковыми сторонами “гантелей“. Такое перекрывание приводит к образованию двух p-связей, т.е. связь в молекуле N 2 является тройной. Однако эти связи энергетически неравноценны: степень перекрывания р х – р х – облаков много выше, чем р у – р у и р z – р z . И, действительно, энергия тройной связи ниже, чем утроенная энергия одной s - связи, а при химических реакциях в первую очередь происходит разрыв p - связей.



p-связи образуются при перекрывании р у – р у, р z – р z , р у – d, р z – d, d – d – облаков (рисунок 4).

Рис. 4. Различные случаи образования p-связей

Нуклоны в ядрах находятся в состояниях, существенно отличающихся от их свободных состояний. За исключением ядра обычного водорода, во всех ядрах имеется не менее двух нуклонов, между которыми существует особое ядерное сильное взаимодействие – притяжение, обеспечивающее устойчивость ядер несмотря на отталкивание одноименно заряженных протонов.

· Энергией связи нуклона в ядре называется физическая величина, равная той работе, которую нужно совершить для удаления нуклона из ядра без сообщения ему кинетической энергии.

· Энергия связи ядра определяется величиной той работы , которую нужно совершить , чтобы расщепить ядро на составляющие его нуклоны без придания им кинетической энергии .

Из закона сохранения энергии следует, что при образовании ядра должна выделяться такая энергия, которую нужно затратить при расщеплении ядра на составляющие его нуклоны. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Если W св – величина энергии, выделяющейся при образовании ядра, то соответствующая ей масса

(9.2.1)

называется дефектом массы и характеризует уменьшение суммарной массы при образовании ядра из составляющих его нуклонов.

Если ядро массой М яд образовано из Z протонов с массой m p и из (A Z ) нейтронов с массой m n , то:

. (9.2.2)

Вместо массы ядра М яд величину ∆m можно выразить через атомную массу М ат:

, (9.2.3)

где m Н – масса водородного атома. При практическом вычислении ∆m массы всех частиц и атомов выражаются в атомных единицах массы (а.е.м.). Одной атомной единице массы соответствует атомная единица энергии (a.e.э.): 1 а.е.э. = 931,5016 МэВ.

Дефект массы служит мерой энергии связи ядра:

. (9.2.4)

Удельной энергией связи ядра ω св называется энергия связи , приходящаяся на один нуклон :

. (9.2.5)

Величина ω св составляет в среднем 8 МэВ/нуклон. На рис. 9.2 приведена кривая зависимости удельной энергии связи от массового числа A , характеризующая различную прочность связей нуклонов в ядрах разных химических элементов. Ядра элементов в средней части периодической системы (), т.е. от до , наиболее прочны.

В этих ядрах ω св близка к 8,7 МэВ/нуклон. По мере увеличения числа нуклонов в ядре удельная энергия связи убывает. Ядра атомов химических элементов, расположенных в конце периодической системы (например ядро урана), имеют ω св ≈ 7,6 МэВ/нуклон. Это объясняет возможность выделения энергии при делении тяжелых ядер. В области малых массовых чисел имеются острые «пики» удельной энергии связи. Максимумы характерны для ядер с четными числами протонов и нейтронов ( , , ), минимумы – для ядер с нечетными количествами протонов и нейтронов ( , , ).

Если ядро имеет наименьшую возможную энергию , то оно находится в основном энергетическом состоянии . Если ядро имеет энергию , то оно находится в возбужденном энергетическом состоянии . Случай соответствует расщеплению ядра на составляющие его нуклоны. В отличие от энергетических уровней атома, раздвинутых на единицы электронвольтов, энергетические уровни ядра отстоят друг от друга на мегаэлектронвольт (МэВ). Этим объясняется происхождение и свойства гамма-излучения.

Данные об энергии связи ядер и использование капельной модели ядра позволили установить некоторые закономерности строения атомных ядер.

Критерием устойчивости атомных ядер является соотношение между числом протонов и нейтронов в устойчивом ядре для данных изобаров (). Условие минимума энергии ядра приводит к следующему соотношению между Z уст и А :

. (9.2.6)

Берется целое число Z уст, ближайшее к тому, которое получается по этой формуле.

При малых и средних значениях А числа нейтронов и протонов в устойчивых ядрах примерно одинаковы: Z А Z .

С ростом Z силы кулоновского отталкивания протонов растут пропорционально Z ·(Z – 1) ~ Z 2 (парное взаимодействие протонов ), и для компенсации этого отталкивания ядерным притяжением число нейтронов должно возрастать быстрее числа протонов.

Для просмотра демонстраций щелкните по соответствующей гиперссылке:

Темы кодификатора ЕГЭ: энергия связи нуклонов в ядре, ядерные силы.

Атомное ядро, согласно нуклонной модели, состоит из нуклонов - протонов и нейтронов. Но какие силы удерживают нуклоны внутри ядра?

За счёт чего, например, держатся вместе два протона и два нейтрона внутри ядра атома гелия? Ведь протоны, отталкиваясь друг от друга электрическими силами, должны были бы разлететься в разные стороны! Может быть, это гравитационное притяжение нуклонов друг к другу не даёт ядру распасться?

Давайте проверим. Пусть два протона находятся на некотором расстоянии друг от друга. Найдём отношение силы их электрического отталкивания к силе их гравитационного притяжения:

Заряд протона Кл, масса протона кг, поэтому имеем:

Какое чудовищное превосходство электрической силы! Гравитационное притяжение протонов не то что не обеспечивает устойчивость ядра - оно вообще не заметно на фоне их взаимного электрического отталкивания.

Следовательно, существуют иные силы притяжения, которые скрепляют нуклоны внутри ядра и превосходят по величине силу электрического отталкивания протонов. Это - так называемые ядерные силы.

Ядерные силы.

До сих пор мы знали два типа взаимодействий в природе - гравитационные и электромагнитные. Ядерные силы служат проявлением нового, третьего по счёту типа взаимодействий - сильного взаимодействия. Мы не будем вдаваться в механизм возникновения ядерных сил, а лишь перечислим их наиболее важные свойства.

1. Ядерные силы действуют между любыми двумя нуклонами: протоном и протоном, протоном и нейтроном, нейтроном и нейтроном.
2. Ядерные силы притяжения протонов внутри ядра примерно в 100 раз превосходят силу электрического отталкивания протонов. Более мощных сил, чем ядерные, в природе не наблюдается.
3. Ядерные силы притяжения являются короткодействующими: радиус их действия составляет около м. Это и есть размер ядра - именно на таком расстоянии друг от друга нуклоны удерживаются ядерными силами. При увеличении расстояния ядерные силы очень быстро убывают; если расстояние между нуклонами станет равным м, ядерные силы почти полностью исчезнут.

На расстояниях, меньших м, ядерные силы становятся силами отталкивания.

Сильное взаимодействие относится к числу фундаментальных - его нельзя объяснить на основе каких-то других типов взаимодействий. Способность к сильным взаимодействиям оказалась свойственной не только протонам и нейтронам, но и некоторым другим элементарным частицам; все такие частицы получили название адронов . Электроны и фотоны к адронам не относятся - они в сильных взаимодействиях не участвуют.

Атомная единица массы.

Массы атомов и элементарных частиц чрезвычайно малы, и измерять их в килограммах неудобно. Поэтому в атомной и ядерной физике часто применяется куда более мелкая единица - так
называемая атомная единица массы (сокращённо а. е. м.).

По определению, атомная единица массы есть 1/12 массы атома углерода . Вот её значение с точностью до пяти знаков после запятой в стандартной записи:

А. е. м.кг г.

(Такая точность нам впоследствии понадобится для вычисления одной очень важной величины, постоянно применяющейся в расчётах энергии ядер и ядерных реакций.)

Оказывается, что 1 а. е. м., выраженная в граммах, численно равна величине, обратной к постоянной Авогадро моль:

Почему так получается? Вспомним, что число Авогадро есть число атомов в 12г углерода. Кроме того, масса атома углерода равна 12 а. е. м. Отсюда имеем:

поэтому а. е. м.=г, что и требовалось.

Как вы помните, любое тело массы m обладает энергией покоя E, которая выражается формулой Эйнштейна:

. (1)

Выясним, какая энергия заключена в одной атомной единице массы. Нам надо будет провести вычисления с достаточно высокой точностью, поэтому берём скорость света с пятью знаками после запятой:

Итак, для массы а. е. м. имеем соответствующую энергию покоя :

Дж. (2)

В случае малых частиц пользоваться джоулями неудобно - по той же причине, что и килограммами. Существует гораздо более мелкая единица измерения энергии - электронвольт (сокращённо эВ).

По определению, 1 эВ есть энергия, приобретаемая электроном при прохождении ускоряющей разности потенциалов 1 вольт:

ЭВ КлВ Дж. (3)

(вы помните, что в задачах достаточно использовать величину элементарного заряда в виде Кл, но здесь нам нужны более точные вычисления).

И вот теперь, наконец, мы готовы вычислить обещанную выше очень важную величину - энергетический эквивалент атомной единицы массы, выраженный в МэВ. Из (2) и (3) получаем:

ЭВ . (4)

Итак, запоминаем: энергия покоя одной а. е. м. равна 931,5 МэВ . Этот факт вам неоднократно встретится при решении задач.

В дальнейшем нам понадобятся массы и энергии покоя протона, нейтрона и электрона. Приведём их с точностью, достаточной для решения задач.

А. е. м., МэВ;
а. е. м., МэВ;
а. е. м., МэВ.

Дефект массы и энергия связи.

Мы привыкли, что масса тела равна сумме масс частей, из которых оно состоит. В ядерной физике от этой простой мысли приходится отвыкать.

Давайте начнём с примера и возьмём хорошо знакомую нам -частицу ядро . В таблице (например, в задачнике Рымкевича) имеется значение массы нейтрального атома гелия: она равна 4,00260 а. е. м. Для нахождения массы M ядра гелия нужно из массы нейтрального атома вычесть массу двух электронов, находящихся в атоме:

В то же время, суммарная масса двух протонов и двух нейтронов, из которых состоит ядро гелия, равна:

Мы видим, что сумма масс нуклонов, составляющих ядро, превышает массу ядра на

Величина называется дефектом массы. В силу формулы Эйнштейна (1) дефекту массы отвечает изменение энергии:

Величина обозначается также и называется энергией связи ядра . Таким образом, энергия связи -частицы составляет приблизительно 28 МэВ.

Каков же физический смысл энергии связи (и, стало быть, дефекта масс)?

Чтобы расщепить ядро на составляющие его протоны и нейтроны, нужно совершить работу против действия ядерных сил. Эта работа не меньше определённой величины ; минимальная работа по разрушению ядра совершается в случае, когда высвободившиеся протоны и нейтроны покоятся.

Ну а если над системой совершается работа, то энергия системы возрастает на величину совершённой работы. Поэтому суммарная энергия покоя нуклонов, составляющих ядро и взятых по отдельности, оказывается больше энергии покоя ядра на величину .

Следовательно, и суммарная масса нуклонов, из которых состоит ядро, будет больше массы самого ядра. Вот почему возникает дефект массы.

В нашем примере с -частицей суммарная энергия покоя двух протонов и двух нейтронов больше энергии покоя ядра гелия на 28 МэВ. Это значит, что для расщепления ядра на составляющие его нуклоны нужно совершить работу, равную как минимум 28 МэВ. Эту величину мы и назвали энергией связи ядра.

Итак, энергия связи ядра - это минимальная работа, которую необходимо совершить для расщепления ядра на составляющие его нуклоны.

Энергия связи ядра есть разность энергий покоя нуклонов ядра, взятых по отдельности, и энергии покоя самого ядра. Если ядро массы состоит из протонов и нейтронов, то для энергии связи имеем:

Величина , как мы уже знаем, называется дефектом массы.

Удельная энергия связи.

Важной характеристикой прочности ядра является его удельная энергия связи , равная отношению энергии связи к числу нуклонов:

Удельная энергия связи есть энергия связи, приходящаяся на один нуклон, и имеет смысл средней работы, которую необходимо совершить для удаления нуклона из ядра.

На рис. 1 представлена зависимость удельной энергии связи естественных (то есть встречающихся в природе 1 ) изотопов химических элементов от массового числа A.

Рис. 1. Удельная энергия связи естественных изотопов

Элементы с массовыми числами 210–231, 233, 236, 237 в естественных условиях не встречаются. Этим объясняются пробелы в конце графика.

У лёгких элементов удельная энергия связи возрастает с ростом , достигая максимального значения 8,8 МэВ/нуклон в окрестности железа (то есть в диапазоне изменения примерно от 50 до 65). Затем она плавно убывает до величины 7,6 МэВ/нуклон у урана .

Такой характер зависимости удельной энергии связи от числа нуклонов объясняется совместным действием двух разнонаправленных факторов.

Первый фактор - поверхностные эффекты . Если нуклонов в ядре мало, то значительная их часть находится на поверхности ядра. Эти поверхностные нуклоны окружены меньшим числом соседей, чем внутренние нуклоны, и, соответственно, взаимодействуют с меньшим числом соседних нуклонов. При увеличении доля внутренних нуклонов растёт, а доля поверхностных нуклонов - падает; поэтому работа, которую нужно совершить для удаления одного нуклона из ядра, в среднем должна увеличиваться с ростом .

Однако с возрастанием числа нуклонов начинает проявляться второй фактор - кулоновское отталкивание протонов . Ведь чем больше протонов в ядре, тем большие электрические силы отталкивания стремятся разорвать ядро; иными словами, тем сильнее каждый протон отталкивается от остальных протонов. Поэтому работа, необходимая для удаления нуклона из ядра, в среднем должна уменьшаться с ростом .

Пока нуклонов мало, первый фактор доминирует над вторым, и потому удельная энергия связи возрастает.

В окрестности железа действия обоих факторов сравниваются друг с другом, в результате чего удельная энергия связи выходит на максимум. Это область наиболее устойчивых, прочных ядер.

Затем второй фактор начинает перевешивать, и под действием всё возрастающих сил кулоновского отталкивания, распирающих ядро, удельная энергия связи убывает.

Насыщение ядерных сил.

Тот факт, что второй фактор доминирует у тяжёлых ядер, говорит об одной интересной особенности ядерных сил: они обладают свойством насыщения. Это означает, что каждый нуклон в большом ядре связан ядерными силами не со всеми остальными нуклонами, а лишь с небольшим числом своих соседей, и число это не зависит от размеров ядра.

Действительно, если бы такого насыщения не было, удельная энергия связи продолжала бы возрастать с увеличением - ведь тогда каждый нуклон скреплялся бы ядерными силами со всё большим числом нуклонов ядра, так что первый фактор неизменно доминировал бы над вторым. У кулоновских сил отталкивания не было бы никаких шансов переломить ситуацию в свою пользу!

mob_info