Как движется галактика во вселенной. Что заставляет нашу галактику лететь с огромной скоростью? Неправильные галактики каталога Мессье

Вселенная поражает своими размерами и скоростями. Все объекты (звезды, планеты, астероиды, звездная пыль) в ней находятся в постоянном движении. Многие из них имеют схожие траектории движения, так как на них действуют одни и те же законы. Движение Солнечной системы в Галактике имеет свои особенности, которые могут показаться необычными на первый взгляд, хотя оно подчиняется тем же законам, что и другие объекты космоса.

Краткая история астрономии

Раньше люди думали, что Земля плоская и накрыта хрустальным колпаком, а звезды, Солнце и Луна прикреплены к нему. В Древней Греции, благодаря трудам Птолемея и Аристотеля, считали, что Земля имеет форму шара, а все остальные объекты движутся вокруг нее. Но уже в XVII веке впервые было высказано сомнение относительно того, что Земля - это центр мира. Коперник и Галилео, наблюдая за движением планет, пришли к выводу, что Земля вращается вместе с другими планетами вокруг Солнца.

Современные ученые пошли еще дальше и определили, что и Солнце не является центром и, в свою очередь, вращается вокруг центра галактики Млечный Путь. Но это оказалось не совсем точным. Околоземные орбитальные телескопы показали, что наша Галактика не единственная. В космосе существуют миллиарды галактик и скоплений звезд, облаков космической пыли, и галактика Млечный Путь также двигается относительно них.

Светило

Солнце является главной движущей силой движения Солнечной системы в Галактике. Оно движется по эллиптической, почти идеально круглой окружности, и тянет за собой планеты и астероиды, которые входят в состав системы. Солнце вращается не только вокруг центра галактики Млечный Путь, но и вокруг собственной оси. Его ось смещена в сторону на 67,5 градусов. Так как оно (при таком наклоне) практически лежит на боку, со стороны кажется, что планеты, входящие в состав Солнечной системы, вращаются в вертикальной, а не в наклонной плоскости. Солнце вращается против часовой стрелки вокруг центра Галактики.

Также оно двигается в вертикальном направлении, периодически (раз в 30 миллионов лет) то опускаясь, то поднимаясь относительно центральной точки. Возможно, такая траектория движения Солнечной системы в Галактике обусловлена тем, что ядро галактики Млечный Путь вращается вокруг собственной оси как волчок - периодически наклоняясь то в одну, то в другую сторону. Солнце только повторяет эти движения, так как по законам физики оно должно двигаться строго по линии экватора центрального тела Галактики, в которой, по предположению ученых, находится гигантская черная дыра. Но вполне возможно, что такая траектория - следствие влияния других крупных объектов.

Скорость движения Солнечной системы в Галактике равна скорости Солнца - около 250 км/с. Полный оборот вокруг центра она делает за 13,5 млн лет. За всю историю существования галактики Млечный Путь Солнце сделало три полных оборота.

Законы движения

При определении скорости движения Солнечной системы вокруг центра Галактики и планет, входящих в состав этой системы, следует учитывать тот факт, что внутри Солнечной системы действуют законы Ньютона, в частности закон притяжения или гравитации. Но при определении траектории и скорости движения планет вокруг центра Галактики действует еще и закон относительности Эйнштейна. Поэтому скорость Солнечной системы равна скорости обращения Солнца, так как около 98 % от всей массы системы находится в нем.

Его движение в Галактике подчиняется второму Точно так же этому закону подчиняются планеты Солнечной системы. Согласно ему, все они двигаются в одной плоскости вокруг центра Солнца.

К центру или от него?

Помимо того, что все звезды и планеты двигаются вокруг центра Галактики, они также двигаются в других направлениях. Ученые давно определили, что галактика Млечный Путь расширяется, но происходит это медленнее, чем должно быть. Такое расхождение было выявлено путем компьютерного моделирования. Расхождение долгое время вызывало недоумение у астрономов, пока не было доказано существование черной материи, которая и не дает галактике Млечный Путь распасться. Но движение в сторону от центра продолжается. То есть Солнечная система движется не только по круговой орбите, но и смещается в противоположную сторону от центра.

Движение в бесконечном пространстве

Наша Галактика также движется в пространстве. Ученые выяснили, что она движется в направлении туманности Андромеды и через несколько миллиардов лет столкнется с ней. Вместе с тем движение Солнечной системы в Галактике происходит в том же направлении, так как она является частью Млечного Пути, со скоростью 552 км/с. Причем ее скорость движения к туманности Андромеды значительно выше, чем скорость обращения вокруг центра Галактики.

Почему Солнечная система не распадается

Космическое пространство не является пустотой. Все пространство вокруг звезд и планет наполнено космической пылью или темной материей, которая окружает все галактики. Большие скопления космической пыли называют облаками и туманностями. Часто облака космической пыли окружают крупные объекты - звезды и планеты.

Солнечная система окружена такими облаками. Они создают эффект упругого тела, что придает ей больше прочности. Другим фактором, не дающим распасться Солнечной системе, является сильное гравитационное взаимодействие между Солнцем и планетами, а также большое расстояние до ближайших к нему звезд. Так, самая близкая к Солнцу звезда Сириус находится на расстоянии около 10 млн световых лет. Чтобы было понятно, насколько это далеко, достаточно сравнить расстояние от светила до планет, входящих в состав Солнечной системы. Например, расстояние от него до Земли составляет 8,6 световых минут. Поэтому взаимодействие Солнца и других объектов внутри Солнечной системы значительно сильнее, чем других звезд.

Как движутся планеты во Вселенной

Планеты движутся в Солнечной системе в двух направлениях: вокруг Солнца и вместе с ним вокруг центра Галактики. Все объекты, входящие в состав этой системы, движутся в двух плоскостях: по линии экватора и вокруг центра Млечного Пути, повторяя все движения светила, включая те, которые происходят в вертикальной плоскости. При этом они движутся под углом 60 градусов относительно центра Галактики. Если смотреть на то, как двигаются планеты и астероиды Солнечной системы, то их движение является спиралевидным. Планеты движутся за Солнцем и вокруг него. Спираль из планет и астероидов каждые 30 млн лет поднимается вверх вместе со светилом и так же плавно опускается.

Движение планет внутри Солнечной системы

Для того чтобы картина движения системы в Галактике приобрела законченный вид, следует также рассмотреть то, с какой скоростью и по какой орбите двигаются планеты вокруг Солнца. Все планеты двигаются против часовой стрелки, также они вращаются вокруг собственной оси против часовой стрелки, за исключением Венеры. Многие имеют несколько спутников и кольца. Чем дальше планета от Солнца, тем более вытянутую орбиту она имеет. Например, карликовая планета Плутон имеет настолько вытянутую орбиту, что при прохождении перигелия проходит ближе к нему, чем Уран. Планеты имеют следующие скорости обращения вокруг Солнца:

  • Меркурий - 47,36 км/с;
  • Венера - 35,02 км/с;
  • Земля - 29,02 км/с;
  • Марс - 24,13 км/с;
  • Юпитер - 13,07 км/с;
  • Сатурн - 9,69 км/с;
  • Уран - 6,81 км/с;
  • Нептун - 5,43 км/с.

Очевидна закономерность: чем дальше планета от светила, тем меньше скорость ее движения и длиннее путь. Исходя из этого, спираль движения Солнечной системы имеет самую большую скорость около центра и самую низкую на окраине. До 2006 года крайней планетой считался Плутон (скорость движения 4,67 км/с), но с изменением классификации он был отнесен к категории крупных астероидов - карликовых планет.

Планеты движутся неравномерно, по вытянутым орбитам. Скорость их движения зависит от того, в какой точке находится та или иная планета. Так, в точке перигелия линейная скорость движения выше, чем в афелии. Перигелий - это самая дальняя точка на эллиптической траектории планеты от Солнца, афелий - самая близкая к нему. Поэтому скорость может незначительно меняться.

Вывод

Земля - это одна из миллиардов песчинок, блуждающих в бесконечном пространстве. Но ее движение не хаотично, оно подчинено определенным законам движения Солнечной системы. Главными силами, которые влияют на ее движение, является гравитация. На нее действуют силы двух объектов - Солнца как ближайшей к ней звезды и центра Галактики, так как Солнечная система, в которую входит планета, вращается вокруг него. Если сравнивать скорость ее движения во Вселенной, то она вместе с остальными звездами и планетами движется в направлении туманности Андромеды со скоростью 552 км/с.

Вы сидите, стоите или лежите, читая эту статью, и не ощущаете, что Земля вращается вокруг своей оси с бешеной скоростью - примерно 1 700 км/ч на экваторе. Однако скорость вращения не кажется такой уж быстрой, если перевести ее в км/с. Получится 0,5 км/с - едва заметная вспышка на радаре, в сравнении с другими окружающими нас скоростями.

Так же, как и другие планеты Солнечной системы, Земля вращается вокруг Солнца. И чтобы удерживаться на своей орбите, она двигается со скоростью 30 км/с. Венера и Меркурий, находящиеся ближе к Солнцу, двигаются быстрее, Марс, орбита которого проходит за орбитой Земли, движется намного медленнее нее.

Но даже Солнце не стоит на одном месте. Наша галактика Млечный Путь - огромная, массивная и тоже подвижная! Все звезды, планеты, газовые облака, частицы пыли, черные дыры, темная материя - все это движется относительно общего центра масс.

По предположениям ученых, Солнце находится на расстоянии 25 000 световых лет от центра нашей галактики и двигается по эллиптической орбите, совершая полный оборот каждые 220–250 млн лет. Получается, что скорость Солнца - около 200–220 км/с, что в сотни раз выше скорости движения Земли вокруг оси и в десятки раз выше скорости ее движения вокруг Солнца. Вот так выглядит движение нашей Солнечной системы.

Стационарна ли галактика? Снова нет. Гигантские космические объекты обладают большой массой, а следовательно, создают сильные гравитационные поля. Дайте Вселенной немного времени (а оно у нас было - примерно 13,8 миллиардов лет), и все начнет двигаться в направлении наибольшего притяжения. Вот почему Вселенная не однородна, а представляет собой галактики и группы галактик.

Что это означает для нас?

Это означает, что Млечный Путь тянут к себе другие галактики и группы галактик, расположенные поблизости. Это означает, что доминируют в этом процессе массивные объекты. И это означает, что не только наша галактика, но и все окружающие испытывают влияние этих «тягачей». Мы все ближе подходим к пониманию того, что происходит с нами в космическом пространстве, но нам все еще не хватает фактов, например:

  • каковы были начальные условия, при которых зародилась Вселенная;
  • как различные массы в галактике двигаются и изменяются со временем;
  • как образовывался Млечный Путь и окружающие галактики и скопления;
  • и как это происходит сейчас.

Однако есть трюк, который поможет нам разобраться.

Вселенную наполняет реликтовое излучение с температурой 2,725 К, которое сохранилось со времен Большого Взрыва. Кое-где есть крошечные отклонения - около 100 мкК, но общий температурный фон постоянен.

Это происходит потому, что Вселенная образовалась в результате Большого Взрыва 13,8 миллиардов лет назад и до сих пор расширяется и охлаждается.

Через 380 000 лет после Большого Взрыва Вселенная охладилась до такой температуры, что стало возможным образование атомов водорода. До этого фотоны постоянно взаимодействовали с остальными частицами плазмы: сталкивались с ними и обменивались энергией. По мере остывания Вселенной заряженных частиц стало меньше, а пространства между ними - больше. Фотоны смогли свободно перемещаться в пространстве. Реликтовое излучение - это фотоны, которые были излучены плазмой в сторону будущего расположения Земли, но избежали рассеяния, так как рекомбинация уже началась. Они достигают Землю сквозь пространство Вселенной, которая продолжает расширяться.

Вы сами можете «увидеть» это излучение. Помехи, которые возникают на пустом канале телевизора, если вы используете простую антенну, похожую на заячьи уши, на 1% вызваны реликтовым излучением.

И все-таки температура реликтового фона не одинакова во всех направлениях. По результатам исследований миссии Planck, температура несколько различается в противоположных полушариях небесной сферы: она немного выше на участках неба южнее эклиптики - около 2,728 K, и ниже в другой половине - около 2,722 K.


Карта микроволнового фона, сделанная при помощи телескопа Planck.

Эта разница почти в 100 раз больше остальных наблюдаемых колебаний температуры реликтового фона, и это вводит в заблуждение. Почему так происходит? Ответ очевиден - эта разница происходит не из-за флуктуаций реликтового излучения, она появляется, потому что есть движение!

Когда вы приближаетесь к источнику света или он приближается к вам, спектральные линии в спектре источника смещаются в сторону коротких волн (фиолетовое смещение), когда отдаляетесь от него или он от вас - спектральные линии смещаются в сторону длинных волн (красное смещение).

Реликтовое излучение не может быть более или менее энергичным, значит, мы движемся сквозь пространство. Эффект Доплера помогает определить, что наша Солнечная система движется относительно реликтового излучения со скоростью 368 ± 2 км/с, а местная группа галактик, включающая Млечный Путь, галактику Андромеды и галактику Треугольника, движется со скоростью 627 ± 22 км/с относительно реликтового излучения. Это так называемые пекулярные скорости галактик, которые составляют несколько сотен км/с. Помимо них существуют еще космологические скорости, обусловленные расширением Вселенной и рассчитываемые по закону Хаббла.

Благодаря остаточному излучению от Большого Взрыва мы можем наблюдать, что во Вселенной постоянно все движется и изменяется. И наша галактика - лишь часть этого процесса.

Тем временем, наша местная группа мчится по направлению к центру скопления Девы (Virgo Cluster) на скорости 150 миллионов километров в час.

Млечный Путь и соседка Андромеда, наряду с 30 более мелкими галактиками, а также тысячи галактик Девы, все это притягивается Великим аттрактором. Учитывая скорости при таких масштабах, невидимая масса, занимающая пустоты между галактиками и кластерами галактик, должна по меньшей мере в десять раз превышать видимую материю.

Даже при всем этом, добавив этот невидимый материал к видимому материалу и получив среднюю массу вселенной, мы получим всего 10-30 % от критической плотности, которая необходима, чтобы «закрыть» вселенную. Этот феномен позволяет предположить, что вселенная «открыта». Космологи продолжают спорить на эту тему точно так же, как пытаются , или «темной материи».

Считается, что определяет структуру Вселенной на огромных масштабах. Темная материя гравитационно взаимодействует с нормальным веществом и именно это позволяет астрономам наблюдать формирование длинных тонких стен супергалактических кластеров.

Недавние измерения (с помощью телескопов и космических зондов) распределения массы в M31, крупнейшей галактике в окрестностях Млечного Пути, и других галактиках привели к признанию того факта, что галактики наполнены темной материей, и показали, что таинственная сила - - заполняет вакуум пустого пространства, ускоряя расширение Вселенной.

Теперь астрономы понимают, что окончательная судьба вселенной неразрывно связана с наличием темной энергии и темной материи. Современная стандартная модель для космологии предполагает, что во вселенной 70 % темной энергии, 25 % темной материи и всего 5 % нормальной материи.

Мы не знаем, что такое темная энергия и почему она существует. С другой стороны, теория частиц подсказывает, что на микроскопическом уровне даже идеальный вакуум пузырится квантовыми частицами, которые являются естественным источником темной энергии. Но элементарные расчеты показывают, что темная энергия, которая вырабатывается из вакуума, имеет значение в 10 120 раз больше, чем то, которое мы наблюдаем. Некоторые неизвестные физические процессы должны устранять большинство, но не всю, энергию вакуума, оставляя достаточно для ускорения расширения вселенной.

Новой теории элементарных частиц придется объяснить этот физический процесс. Новые теории «темных аттракторов» прикрываются так называемым принципом Коперника, который говорит о том, что нет ничего удивительного в том, что мы, наблюдатели, предполагаем, что вселенная неоднородна. Такие альтернативные теории объясняют наблюдаемое ускоренное расширение Вселенной без привлечения темной энергии, а вместо этого предполагают, что мы недалеко от центра пустоты, за которой более плотный «темный» аттрактор тянет нас к себе.

В статье, опубликованной в Physical Review Letters , Пенгжи Чжан из Шанхайской астрономической обсерватории и Альберт Стеббинс на выставке лаборатории Ферми показали, что популярная модель пустоты и многие другие вполне могут заменить темную энергию, не вступая в противоречия с наблюдениями телескопов.

Опросы показывают, что вселенная однородна, по меньшей мере, на масштабах до гигапарсека. Чжан и Стеббинс утверждают, что если большие масштабы неоднородности существуют, они должны быть обнаружены как температурный сдвиг в космическом микроволновом фоне реликтовых фотонов, образовавшихся спустя 400 000 лет после Большого Взрыва. Это происходит из-за электронно-фотонного рассеяния (обратного Комптоновскому).

Сосредоточив внимание на модели пустоты «пузырь Хаббла», ученые показали, что в таком сценарии некоторые области вселенной будут расширяться быстрее, чем другие, в результате чего температурный сдвиг будет больше, чем ожидается. Но телескопы, изучающие реликтовое излучение, не видят такого большого сдвига.

Что ж, как говорил Карл Саган, «экстраординарные заявления требуют экстраординарных доказательств».

|| Раздвижение пространства. Движение в микромире

Раздвижение пространства

Все видимые с Земли галактики входят в Метагалактику - систему более высокого уровня. Современные астрофизики Метагалактику склонны считать всей Вселенной. Наша Галактика, или система звезд Млечного Пути, - одна из звёздных систем, входящих в состав Метагалактики. В начале ХХ века удалось доказать, что многие из известных ранее светлых туманностей, звёздная природа которых долгое время оставалась под сомнением, являются в действительности гигантскими звёздными системами, подобными нашей Галактике. Согласно последним признанным оценкам, размеры видимой части Метагалактики лежат в пределах 13,4-15 миллиардов световых лет (http://ru.wikipedia.org/wiki/). Чтобы пересечь видимую нами в самые мощные телескопы часть Метагалактики, свету требуется столько земных лет. Кстати, свет в вакууме распространяется со скоростью 300 тыс. км в секунду. Около 1 млрд. галактик доступны наблюдению современными телескопами.

Часть видимой в современные телескопы Метагалактики. Распределение галактик во Вселенной (по Дж. Пибблсу). Каждая светлая точка - это целая галактика. Яркие светлые пятна - скопления галактик.

Детальные исследования внегалактических объектов привели к открытию галактик разных типов - радиогалактик, квазаров и др. В пространстве между галактиками находятся отдельные звёзды, а также межгалактический газ, космические лучи, электромагнитное излучение; внутри скоплений галактик содержится и космическая пыль.

Средняя плотность вещества в известной нам части Метагалактики оценивается различными авторами от 10 в -31 степени до 10 в -30 степени г/см 3 . В пределах Метагалактики наблюдаются значительные местные неоднородности. Многие галактики составляют группировки различной степени сложности - двойные и более сложные кратные системы; скопления, включающие десятки, сотни и тысячи галактик; облака, содержащие десятки тысяч (и более) галактик. Так, например, наша Галактика и около полутора десятков ближайших к ней галактик являются членами небольшого скопления, так называемой местной группы галактик. Скопление, содержащее несколько тысяч галактик, видно в созвездиях Девы и Волос Вероники на расстоянии около 40 млн. световых лет от нас. Распределение галактик в масштабе всей известной части Метагалактики не обнаруживает систематического падения плотности в каком-либо направлении, что могло бы указывать на приближение к ее границам. (Б. А. Воронцов-Вельяминов. Большая советская энциклопедия).

Наша Галактика вместе с Туманностью Андромеды и тремя десятками других менее крупных галактик образует Местную группу галактик. Эта группа в свою очередь входит в крупное скопление галактик с центром в направлении на созвездие Девы. В центре скопления находится очень массивная эллиптическая галактика, обозначаемая как Дева А, и само это скопление, насчитывающее в своем составе около тысячи галактик, называется скоплением в Деве. Скопление в Деве служит ядром еще более крупного образования, называемого Местным сверхскоплением. Кроме скопления в Деве в него входит еще несколько скоплений и групп галактик. Местное сверхскопление - это уплощенная система. Сейчас находят и другие сверхскопления, подобные Местному сверхскоплению. Вместе они образуют нечто вроде сетчатой структуры. Протяженные сверхскопления соединяются и пересекаются; они служат "стенками" ячеек (метагалактических пузырей), внутри которых галактики почти полностью отсутствуют. (http://secretspace.ru/index_770.html).

Ученые считают, что расширение Вселенной началось 18 млрд. лет назад "Большим Взрывом" из сверхплотного состояния - сингулярности. Что в действительности произошло тогда и каким образом всему веществу Вселенной были сообщены начальные скорости расширения, неизвестно. Это составляет, пожалуй, самую трудную проблему современной астрономии и физики.

Вещество Вселенной представляло собою тогда необычайно плотную и горячую плазму, ионизованный газ, пронизанный к тому же мощным электромагнитным излучением. Высокая плотность вещества в ранние эпохи следует из теории космологического расширения: если сейчас в среднем по Вселенной плотность вещества падает из-за общего расширения, то в прошлом она была, очевидно, больше. Чем дальше в прошлое, тем более плотным должно было быть вещество Вселенной. Теория утверждает, что в прошлом Вселенной существовал такой момент, когда плотность была (формально) бесконечной. Тогда-то и произошел "Большой Взрыв", с которого началась история расширяющейся Вселенной.

Космология Фридмана дает динамику Вселенной, но ничего не говорит о ее температуре. Динамику нужно дополнить еще термодинамикой. При этом, в принципе, допустимы две крайние возможности: 1) неограниченное возрастание плотности вещества при взгляде в прошлое Вселенной сопровождается и неограниченным возрастанием его температуры; 2) начальная температура Вселенной равна нулю.

Идею "горячего начала" Вселенной выдвинул в 40-е годы прошлого века физик Г. Гамов. Но с ней успешно конкурировала и идея "холодного начала", тоже отнюдь не тривиальная. (Нильс Бор по поводу противоположных гипотез заявил, что по-настоящему глубокая идея всегда такова, что противоположное ей утверждение тоже представляет собой глубокую идею.)

Исходным мотивом и целью гипотезы горячей Вселенной было объяснение наблюдаемого химического состава звезд. В плотном и горячем веществе в первые минуты космологического расширения могли происходить разнообразные ядерные реакции, и в этом "котле", как предполагалось, должно было "свариться" вещество нужного состава, из которого в дальнейшем и образуются все звезды Вселенной. И действительно, теоретический расчет показывает, что по завершении этого процесса подавляющая часть вещества - до 75% (по массе) - приходится на водород и почти 25% - на гелий. Это очень близко к тому, что в действительности наблюдается во Вселенной. Что же касается более тяжелых элементов, то в космологическом "котле" их может "свариться" очень мало, меньше сотой доли процента. Они возникают в основном гораздо позже, в термоядерных реакциях, протекающих уже в самих звездах.

Согласно общим законам термодинамики, вместе с горячим веществом в ранней Вселенной обязательно должно было существовать излучение - совокупность электромагнитных волн, распространявшихся во всех направлениях. Об этих пакетах волн можно говорить и как о газе частиц - фотонов - квантов электромагнитных волн. Температура газа фотонов такая же, как и температура излучения. В ходе общего космологического расширения температура вещества и фотонов падает с падением плотности от очень больших до очень малых значений, но фотоны при этом никуда не исчезают, они должны сохраниться до современной эпохи, создавая общий фон излучения во Вселенной. Это предсказание теории Гамова подтвердилось в 1965 г., когда астрофизики А. Пензиас и Р. Вильсон обнаружили космический фон электромагнитного излучения. Температура фотонов оказалась очень низкой - всего около трех градусов по шкале Кельвина. Электромагнитные волны, соответствующие такому холодному газу фотонов, принадлежат в основном диапазону миллиметровых волн. По предложению астронома И. С. Шкловского, это излучение было названо реликтовым. (Информация из книги И. Д. Новикова "Эволюция Вселенной". М.: Наука, 1983).

Фиг. 15. Скопление галактик в Метагалактике. Трудно представить, что все эти светлые круглые и вытянутые пятнышки - галактики, что в каждой из них миллионы звездных систем с планетами.

http://ru.wikipedia.org/wiki/%D0%A4%D0%B0%D0%B9%D0%BB:HUDF-JD2.jpg

В 20-е годы ХХ века было открыто странное космическое явление - разбегание галактик в Метагалактике: сначала это открытие сделал теоретически Гамов, затем факт разбегания галактик доказал экспериментально Хабл. Галактики "разбегаются", и доказательство этому - смещение линий спектра в красную сторону. Это значит, что от улетающей галактики световые электоромагнитные волны, долетая до Земли, "растягиваются" - становятся длиннее. В конце ХХ века астрофизики установили, что чем дальше от нас находится галактика, тем с большей скоростью она от нас удаляется, а самые дальние галактики удаляются от нас со скоростью света (300000 км/сек).

Но ведь из Общей Теории Относительности следует, что в нашей Вселенной скоростей больше скорости света быть не может. Как же это объяснить? Неужели Эйнштейн был неправ?

Космофизики пытаются объяснить резбегание галактик теорией Большого Взрыва , согласно которой Метагалактика (наша Вселенная) возникла из некоего сверхплотного тела (сингулярности) в результате его взрыва 18 миллиардов лет назад. Галактики, согласно этой теории, - это результат остывания плазмы, образовавшейся при Большом взрыве.

Согласно теории Большого Взрыва, в этой плазме возникли неоднородности (причин возникновения неоднородностей теория не называет), затем стали образовываться огромные облака, которые по мере остывания сжимались. В результате элементарные частицы, из которых состояли эти облака, взаимодействуя друг с другом, образовали атомы, атомы объединялись в молекулы, из молекул в результате дальнейшего сжатия облаков образовались ядра звезд и планет. Но энергия, которая была передана облакам плазмы при Большом взрыве, сохранилась, поэтому галактики и разбегаются. Но почему дальние галактики убегают быстрее ближних? На этот вопрос молчит наука.

Фиг. 16. Неравномерное распределение галактик в Метагалактике.

Теория Фридмана, как и все прочие космологические теории, в качестве основного постулата использует утверждение об изотропности метагалактики, точнее, о равномерности распределения в ней вещества. Якобы в масштабах Метагалактики это так, потому что иначе быть не может. Но, глядя на эти фотографии и рисунки, основанные на конкретных астрономических наблюдениях, я засомневался в справедливости этого постулата, а точнее, допущения. Галактики в Метагалактике распределены неравномерно! Они образуют в Метагалактике так называемую "сотовую структуру", располагаясь по стенкам огромных пустых пузырей, заполненных вакуумом.

Фиг. 17. Неравномерное распределение галактик в Метагалактике.

Я уже писал раньше, что галактики на самом деле не разбегаются, а расширяется пространство - расширяется вакуум, который разделяет скопления галактик. Этот процесс можно назвать растягиванием трехмерного пространства-вакуума в тех частях Вселенной, где концентрация вещества меньше некоторого минимума. Причем пространство-вакуум растягивается в каждой точке - оно просто раздвигается. Поэтому, чем дальше от нас находится галактика, тем быстрее она от нас удаляется, поэтому самые дальние видимые галактики удаляются от нашей галактики со скоростью, близкой к скорости света. А те галактики, которые находятся дальше некоторого расстояния L (за горизонтом Метагалактики), удаляются от нас со скоростью большей, чем скорость света, поэтому для нас они невидимы - они "за горизонтом" видимости. Но они есть, и если бы мы передвинулись на несколько миллиардов световых лет, то увидели бы галактики, которые из нашей точки не видны. Но в то же время стали бы невидимыми дальние галактики с противоположной стороны, от которых мы удалились.

Если бы мы могли моментально переместиться на край видимой нами сейчас Вселенной, мы бы увидели, что этого края нет, что за ним простираются миллиарды галактик, которые тоже "разбегаются". И где бы мы не очутились в Метагалактике, нам всюду бы казалоссь, что мы находимся в ее центре.

Фиг. 18. Сотовая структура Метагалактики. Галактики в Метагалактике располагаются по поверхности "пузырей расширяющегося вакуума".

Но есть вопрос: а является ли движением в обычном понимании растяжение вакуума - расширение Вселенной? Мы привыкли считать, что движение тел в поле гравитации вызывают силы притяжения этих тел друг к другу. Силы действуют на тела и в результате их непосредственного соударения (бильярдные шары). Силы притяжения вызывают движение планет вокруг звезд и звезд вокруг центров галактик. А в случае растяжения вакуума разве никаких сил нет? Вероятно, силы есть, только это силы антигравитации, ведь они раздвигают пространство и "разбрасывают" галактики. Полномасштабное космическое взаимодействие - это не только притяжение одних тел к другим, но это и разбегание галактик друг от друга в результате раздвижения вакуума.

Думаю, что если концентрация гравитирующей массы в некотором объеме пространства выше определенной величины G, то пространство в этом объеме не растягивается, здесь гравитация и антигравитация уравновешивают друг друга. Но если концентрация гравитирующей массы в некоторой части пространства значительно меньше этой величины, то тогда антигравитация преобладает и вакуум раздвигается. Но когда концентрация вещества значительно больше G, то тогда космические тела падают друг на друга, образуют сверхплотные тела, которые космофизики называют сингулярностями.

Возможно ли обычное перемещение тел в раздвигающемся пространстве-вакууме? Иными словами, возможны ли межгалактические перелеты космических кораблей сквозь пузыри раздвигающегося пространства, основанные на известном нам принципе устройства космических кораблей - "действие равно противодействию", т.е. на реактивной тяге? Думаю, что движение космического корабля в межгалактическом пространстве раздвигающегося межгалактического пузыря будет похоже на движение пловца к берегу, когда отливное течение уносит его от берега. Космический корабль должен развить скорость большую, чем скорость раздвижения пространства-вакуума. Если его скорость будет меньше скорости раздвижения пространства-вакуума, то он будет не приближаться к цели, а удаляться от нее. Для межгалактических полетов потребуются особые двигатели - "пожиратели вакуума". Но вот во что они будут преобразовывать этот вакуум? Может быть, в элементарные частицы или излучение? Пока наука не готова ответить на этот вопрос. Наверное, проще в Метагалактике передвигаться по стенкам метагалактических пузырей, в этом случае, двигаясь по кривой, можно быстрее достичь цели, нежели лететь сквозь метагалактический пузырь.

Итак, мы познакомились с тремя способами изменения расстояния между телами в пространстве - тремя типами движения: 1 - перемещение при соударении, 2 - движение в поле гравитации в результате гравитационного притяжения и 3 - перемещением в результате раздвижения пространства-вакуума.

Фиг. 19. Участок звездного неба, увиденный в телескоп. Видны мириады звезд а также странные темные участки, в которых звезд нет, или которые поглощают идущий к нам от них свет (непрозрачные участки). А может, это пузыри раздвигающегося пространства-вакуума?

Во всех трех случаях изменение расстояний между объектами мы считаем движением и не видим принципиальной разницы между вторым и третьим типом движения. А ведь в одном случае мы имеем дело с гравитацией, а в другом - с антигравитацией. Думаю, правильнее и тот и другой тип движения считать проявлениями гравитации, расширив это понятие. Во втором случае гравитация будет положительной, а в третьем - отрицательной. В теории относительности Эйнштейна постулируется воздействие вещества на пространство-вакуум: массивные тела искривляют пространство. Но в его теории ничего не говорится о том, что будет происходить с пространством-вакуумом, если вещества в нем будет очень мало. Априори считается, что в этом случае с пространством-вакуумом ничего происходить не будет. Однако разбегание галактик в Метагалактике говорит нам о другом.

Если в пределах звездных систем и галактик главную роль играет положительная гравитация, то в пределах Метагалактики - отрицательная и положительная. Вакуум и вещество - суть две взаимодействующие формы материи, из которых построена наша бесконечная в пространстве и времени Вселенная. А гравитационное взаимодействие может быть как положительное, так и отрицательное.

Считаю, что прав был древний грек Гераклит Эфесский, который писал: "Мир, единый из всего, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющим и закономерно угасающим". Или в другом переводе: " Этот космос, тот же самый для всех, не создал никто ни из богов, ни из людей, но он всегда был, есть и будет вечно живым огнем, мерами разгорающимся и мерами погасающим".

Измеряя световую энергию, излучаемую Млечным Путем, можно приблизительно определить массу нашей галактики. Она равняется массе ста миллиардов Солнц. Однако, "изучая закономерности взаимодействия того же Млечного Пути с близлежащей галактикой Андромеды, мы обнаруживаем, что наша Галактика притягивается к ней так, как будто весит в десять раз больше», пишет Давид Шрамм. Астрофизики уверенно заявляют, что Вселенная простирается на Х световых лет и ее возраст - У миллиардов лет.

Для нескольких тысяч галактик измерены расстояния от нас. Они оказались расположены на таком большом расстоянии, что их свет от них идет до нас около 10 млрд. лет. Ближайшие к нам галактики - Магеллановы облака - расположены на расстоянии около 150000 световых лет, а Туманность Андромеды расположена в десять раз дальше. Большинство галактик в телескоп выглядят как маленькие туманные пятнышки. Невооруженным глазом можно увидеть три ближайшие к нам галактики: Туманность Андромеды в Северном полушарии, Большое и Малое Магеллановы облака в Южном полушарии неба.

Мы не имеем ясного представления о нашей Галактике - Млечном Пути. Астроном Б. Дж. Бок пишет: «Я вспоминаю середину 70-х годов, когда я и мои коллеги, исследователи Млечного Пути, были абсолютно уверены в себе. В то время никому не могло прийти в голову, что очень скоро нам придется пересмотреть свои представления о размерах Млечного Пути, увеличив его диаметр втрое, а массу вдесятеро». Но и наша собственная Солнечная система остается для нас загадкой. Традиционное объяснение происхождения планет, согласно которому планеты образовались в процессе конденсации облаков космической пыли и газа, имеет под собой довольно шаткий фундамент. Профессор В. Мак-Рей пишет: «Проблема происхождения Солнечной системы продолжает оставаться, пожалуй, самой значительной из всех нерешенных проблем астрономии». Пока что нет никаких оснований утверждать, что все ответы на вопросы космологии уже описаны математическим формулами, преждевременно отвергать альтернативные подходы, которые могут быть основаны на иных законах и принципах, чем известные нам законы физики.

Согласно теории Большого взрыва, Вселенная (=Метагалактика) возникла из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Это состояние, называемое сингулярностью, не поддается математическому описанию. Такое начальное состояние в принципе не может быть описано математически. Об этом состоянии ровным счетом ничего нельзя сказать. Все расчеты заходят в тупик. Это все равно что заниматься делением какого-то числа на ноль. Профессор Б. Лоувел писал о сингулярностях следующее: «В попытке физически описать исходное состояние Вселенной мы натыкаемся на препятствие. Вопрос в том, является ли это препятствие преодолимым? Может быть, все наши попытки научно описать исходное состояние Вселенной заранее обречены на неудачу?" Пока что это препятствие не смогли преодолеть даже самые выдающиеся ученые, разрабатывающие теорию Большого взрыва.

В научно-популярных изложениях теории Большого взрыва сложности, связанные с исходной сингулярностью, либо замалчиваются, либо упоминаются вскользь, но в специальных статьях ученые, делающие попытки подвести математическую базу под эту теорию, признают их главным препятствием. Профессора математики С. Хоукинг и Г. Эллис отмечают в своей монографии «Крупномасштабная структура пространства-времени»: «На наш взгляд, вполне оправданно считать физическую теорию, которая предсказывает сингулярность, несостоявшейся». Гипотеза о происхождении Вселенной, которая постулирует, что исходное состояние Вселенной не поддается физическому описанию, выглядит довольно подозрительно. Но это еще полбеды. Следующий вопрос: откуда взялась сама сингулярность? И ученые вынуждены объявить математически неописуемую точку бесконечной плотности и бесконечно малых размеров, существующую вне пространства и времени, безначальной причиной всех причин. (Информация взята с сайта: http://www.goldentime.ru/Big_Bang/4.htm)

Б. Лоувел утверждает, что сингулярность в теории большого взрыва «часто представлялась как математическая проблема, возникшая из постулата об однородности Вселенной». Чтобы скорректировать это, теоретики стали вводить в свои модели сингулярности асимметрию, аналогичную той, которую можно видеть в наблюдаемой Вселенной. Таким образом, они надеялись внести в исходное состояние Вселенной достаточную неупорядоченность, необходимую для того, чтобы сингулярность не сводилась к точке. Однако все их надежды были разрушены Хоукингом и Эллисом, которые утверждают, что, согласно их расчетам, неоднородная сингулярность существовать не может».

В 60-е годы нынешнего столетия было обнаружено микроволновое фоновое излучение, равномерно заполняющее все космическое пространство. Оно представляет собой радиоволны миллиметрового диапазона, распространяющиеся по всем направлениям. Таинственное явление было открыто радиоастрономами Арно Пензиасом и Робертом Вильсоном, за что оба были удостоены Нобелевской премии. «Фотонный газ» равномерно заполняет всю Вселенную. Его температура близка к абсолютному нулю - около 3 о К. Зато энергия, сосредоточенная в нем, превышает световую энергию всех звезд и галактик, вместе взятых, за все время их существования.

Новооткрытое явление немедленно было истолковано как температурно ослабленное излучение, образовавшееся вместе со всей Вселенной в результате Большого взрыва 10-20 миллиардов лет тому назад. За истекшее время эти, по-другому называемые еще «реликтовыми», фотоны якобы успели остыть до температуры около трех градусов по шкале Кельвина. «Нормальными» и «ослабленными» световыми квантами наполнено все космическое пространство: на каждый протон приходится несколько десятков миллионов таких фотонов. Так что же представляет собой это загадочное «реликтовое» излучение? И можно ли говорить о «реликтовых» фотонах?

Движение в микромире

Но есть еще одна разновидность движения - это движение в микромире, которое в принципе отличается и от перемещения тел в пространстве, и от раздвижения этого пространства . Эта разновидность движения еще более загадочна, чем движение в результате раздвижения пространства-вакуума. От рассмотрения явлений в масштабе Метагалактики мы должны перейти к рассмотрению явлений в масштабе субатомном - перейти в микромир. Мы смогли убедиться в том, что движение в масштабе Метагалактики в принципе отличается от движения в масштабе Солнечной системы. А что же происходит в масштабе атомов и элементарных частиц? Оказывается, в микромире движение еще более необычно, чем в Метагалактике.

Когда пучок элементарных частиц проходит через небольшое отверстие, то на выходе наблюдается странная картина. Этот пучок ведет себя как волна - он, пройдя отверстие, несколько рассеивается. Если бы частицы были упругими шариками, то такого явления мы наблюдать не могли бы. Те частицы, которые попали в отверстие, продолжали бы двигаться в том же направлении, а те, которые не попали, отскочили бы назад. Рассеивание пучка элементарных частиц после прохождения через отверстие называется дифракцией. Ограниченный в пространстве волновой пучок имеет свойство «расходиться» («расплываться») в пространстве по мере распространения даже в однородной среде. Это явление не описывается законами геометрической оптики и относится к дифракционным явлениям (дифракционная расходимость, дифракционное расплывание волнового пучка).

Изначально явление дифракции трактовалось как огибание волной препятствия , то есть проникновение волны в область геометрической тени. Отступление от прямолинейности распространения света наблюдается также в сильных полях гравитации. Экспериментально подтверждено, что свет, проходящий вблизи массивного объекта, например, вблизи звезды, отклоняется в её поле тяготения в сторону звезды. Таким образом, и в данном случае можно говорить об «огибании» световой волной препятствия. Однако, это явление не относится к дифракции.

Вместе с тем, во многих случаях дифракция может быть и не связана с огибанием препятствия. Такова, например, дифракция на непоглощающих (прозрачных), так называемых фазовых структурах.

На схемах справа показана интенсивность ударов частиц, прошедших сквозь отверстие на экран, который находится за отверстием. Фото с сайтов: http://ru.wikipedia.org/wiki/ и http://teachmen.ru/work/lectureW/.

В 1900 г. Макс Планк ввёл универсальную постоянную h, позднее получившую название "постоянной Планка". Именно дату этого события часто считают годом рождения квантовой теории. В 1913 г. для объяснения структуры атома Нильс Бор предложил существование стационарных состояний электрона в атомах химических элементов, состояний, в которых энергия может принимать лишь дискретные значения. Квантовая гипотеза Планка состояла в том, что любая энергия элементарными частицами поглощается или испускается только дискретными порциями. Эти порции состоят из целого числа квантов с энергией, пропорциональной частоте электромагнитного колебания с коэффициентом пропорциональности, определяемым по формуле:

Где h - постоянная Планка, и .

В 1905 году, для объяснения явлений фотоэффекта, Альберт Эйнштейн, использовав квантовую гипотезу Планка, предположил, что свет состоит из порций - квантов. Впоследствии «кванты» получили название фотонов.

В 1923 году Луи де Бройль выдвинул идею двойственной природы вещества, согласно которой поток материальных частиц обладает и волновыми свойствами, и свойствами частицы с массой и энергией. Это предположение в 1927 году получило экспериментальное подтверждение при исследовании дифракции электронов в кристаллах. До принятия гипотезы де Бройля дифракция расценивалась как исключительно волновое явление, но согласно гипотезе де Бройля дифракцией могут обладать потоки любых элементарных частиц.

В 1926 году Э. Шрёдингер создал на основе этих идей волновую механику, содержащую новые фундаментальные законы кинематики и динамики. Развитие квантовой механики продолжается до сих пор. Помимо квантовой механики, важнейшей частью квантовой теории является квантовая теория поля.

«По современным представлениям, квантовое поле является наиболее фундаментальной и универсальной формой материи, лежащей в основе всех её конкретных проявлений.» (Физическая энциклопедия. КВАНТОВАЯ ТЕОРИЯ ПОЛЯ). «Принято считать, что масса элементарной частицы определяется полями, которые с ней связаны.» (Физический энциклопедический словарь. МАССА). «... разделение материи на две формы - поле и вещество - оказывается довольно условным.» (Физика. О.Ф.Кабардин. 1991. С.337.) «... элементарные частицы материи по своей природе представляют собой не что иное, как сгущения электромагнитного поля...» (А.Эйнштейн. Собрание научных трудов. М.: Наука. 1965. Т.1. С.689.)

С современной точки зрения, частицы материи - это квантованные волновые образования, возбуждённые состояния квантового поля, т.е. рассмотрение полевого строения элементарных частиц надо начинать с анализа свойств возмущений поля (полевых потоков), которые представляют возбуждённые состояния. Например, частицы фотоны - это элементарные возбуждения электромагнитного поля, состоящие из элементарных электрических и магнитных возмущений. В описании полевых процессов пока ещё много неясного, поэтому попытаюсь прочитать физическую литературу как бы между строк, точнее, между цитат и проанализировать то, что из них логически вытекает, но скромно умалчивается. Также цитаты служат напоминанием, если кто подзабыл физику. (Алеманов С.Б. Волновая теория строения элементарных частиц. - М.: "БИНАР", 2011 г. - 104с.).

«Однако позже выяснилось, что пустота - "бывший эфир" - носитель не только электромагнитных волн; в ней происходят непрерывные колебания электромагнитного поля ("нулевые колебания"), рождаются и исчезают электроны и позитроны, протоны и антипротоны и вообще все элементарные частицы. Если сталкиваются, скажем, два протона, эти мерцающие ("виртуальные") частицы могут сделаться реальными - из "пустоты" рождается сноп частиц. Пустота оказалась очень сложным физическим объектом. По существу, физики вернулись к понятию "эфир", но уже без противоречий. Старое понятие не было взято из архива - оно возникло заново в процессе развития науки. Новый эфир называют "вакуумом" или "физической пустотой".» (Академик А.Мигдал).

Экспериментальное подтверждение гипотезы де Бройля стало поворотным моментом в развитии квантовой механики. Это послужило оформлению идей корпускулярно-волнового дуализма. Подтверждение этой идеи для физики стало важным этапом, поскольку дало возможность не только характеризовать любую частицу, присваивая ей определённую индивидуальную длину волны, но также полноправно использовать её в виде определённой величины в волновых уравнениях при описании явлений.

Появление квантовой теории связано с тем, что в рамках классической механики невозможно, например, объяснить движение электронов вокруг атомного ядра. Согласно классической электродинамике, электрон, вращающийся с большой скоростью вокруг атомного ядра, должен излучать энергию, при этом его кинетическая энергия должна уменьшаться, и он непременно должен упасть на ядро. Но электроны вопреки этому на ядро не падают, поэтому атомы как системы устойчивы. Существование устойчивых атомов, согласно классической механике, просто невозможно. Квантовая теория - это совершенно новый взгляд, позволяющий с огромной точностью описывать необычное поведение электронов и фотонов.

Некоторые свойства квантовых систем кажутся необычными в рамках классической механики, например, такие, как невозможность одновременно измерить координату частицы и ее импульс, или несуществование определённых траекторий движения электронов вокруг ядер. Наша повседневная интуиция, основанная на наблюдениях явлений макро и мега уровней, никогда не сталкивается с таким типом движения, поэтому в данном случае «здравый смысл» дает сбой, поскольку он годится только для макроскопических систем. Законы механики и теория гравитации Ньютона применимы для описания движения в макромире, теория относительности - для описания общей структуры пространства-времени, а квантовая механика - для объяснения поведения субатомных частиц. К сожалению, теория Эйнштейна и квантовая теория попрежнему явно противоречат друг другу.

Первым шагом на пути к интеграции обеих теорий является теория квантового поля. Такое объединение идей оказалось довольно успешным, но в то же время П. Дирак, автор теории квантового поля, признался: «Похоже, что поставить эту теорию на солидную математическую основу практически невозможно». Пока никто не имеет ни малейшего представления о том, как это сделать. (http://www.goldentime.ru/Big_Bang/7.htm).

Физик Д. Бем писал: «Всегда имеется вероятность того, что будут обнаружены принципиально иные свойства, качества, структуры, системы, уровни, которые подчиняются совсем другим законам природы». Выходом из теоретических затруднений может оказаться теория пространственно-временных туннелей или, как их еще называют, «космических нор», серьезно рассмотренная физиком Дж. Уилером в работе «реометродинамика» в 1962 г. Эта теория предполагает космические туннели как переходы, связывающие прошлое и будущее или даже различные вселенные друг с другом. (http://www.goldentime.ru/Big_Bang/7.htm). Эта теория исходит из того, что наш мир не четырехмерен, как считал А. Эйнштейн, а пятимерен. В пятом измерении точки нашего пространства-времени, удаленные друг от друга на большое расстояние или время, могут располагаться в непосредственной близости друг к другу. Например, две точки на плоскости (двумерное пространство) удалены друг от друга на 20 см, а если плоскость смять, то в третьем измерении эти точки могут оказаться на расстоянии 2 см, но чтобы попасть из одной точки в другую, необходимо выйти за пределы плоскости в трехмерное пространство.

Похоже, что наш мир в малых масштабах пятимерен. Это значит, что элементарные частицы могут "выпадать" из четырехмерного пространства-времени в пятое измерение и появляться в любой точке "смятого" в пятом измерении четырехмерного пространства-времени. Именно поэтому электрон в атоме не имеет орбиты такой, как, например, орбита Земли в Солнечной системе. Он в атоме относительно ядра движется в пятимерном пространстве, поэтому в один и тот же момент времени он может находиться в нескольких точках четырехмерного пространства-времени, так как эти точки в пятом измерении соприкасаются друг с другом.

Электроны в атоме находятся в виде облаков, которые называются орбиталями. Облака-орбитали бывают разные: одни в виде шара - s-электроны, другие в виде гантели - p-электроны. Есть еще более сложные конфигурации электронных облаков. В пределах s-облака и в пределах p-облака невозможно определить местонахождение электрона точно, можно только определить верочтность его пребывания в разных точках этих облаков. Ф. Янчилина в своей книге "По ту сторону звезд", изданной в Москве в 2003 г., для объяснения движения электрона в атоме вводит понятие дискретного движения. Именно так в четырехмерном пространстве времени будет выглядеть движение частицы, которая на самом-то деле движется в пятимерном пространстве.

В начале двадцатого века Эйнштейн ввел понятие четвертого измерения. В настоящее время по мере того, как обнаруживаются новые следствия уравнений гравитационного поля, выведенных Эйнштейном, физикам приходится вводить новые дополнительные измерения. Физик-теоретик П. Дэвис пишет: «В природе в дополнение к трем пространственным измерениям и одному временному, которые мы воспринимаем в повседневной жизни, существуют еще семь измерений, которые до сей поры никем замечены не были». Чтобы понять движение в мире элементарных частиц (микромире), необходимо просто примириться с тем, что этот мир имеет большее число измерений, чем наш макромир, но для понимания этого требуется определенное «растяжение» ума. (Информация взята с сайта: http://www.goldentime.ru/Big_Bang/10.htm).

Ридберговский атом калия в эксперименте физиков из университета Райса (Хьюстон).

Согласно планетарной модели атома, созданной Нильсом Бором, электроны обращаются вокруг ядра атома, как планеты вокруг звезды. Электрон может испускать фотон, переходя с высокого энергетического уровня на низкий. Напротив, поглощение фотона переводит электрон на более высокий уровень, приводит в возбужденное состояние.

Ридберговскими называют атомы, в которых один из электронов внешней оболочки находится в сверхвозбужденном состоянии. Воздействуя на атом лазерным излучением с определенной длиной волны, можно добиться "раздувания" его внешней электронной оболочки, переводя электроны на все более высокие энергетические уровни. В этом случае электроны в атоме вступают в резонанс с электромагнитными колебаниями, направляемыми лазерным лучом. От этого атом увеличивается в размерах - буквально "распухает".

Физики из Университета Райс (Хьюстон) с помощью лазера увеличили атом калия до гигантского размера - миллиметрового, что примерно в десять миллионов раз больше его обычного размера. Результаты этого эксперимента опубликованы в журнале Physical Review Letters.

Согласно квантовой теории, положение электрона на орбите вокруг атома не может быть определено - электрон представляет собой волну, "размазанную" по оболочке. Однако в случае с ридберговскими атомами, электроны переходят в псевдоклассическое состояние, в котором движение электрона можно отслеживать как движение частицы по орбите. "При сильном увеличении размеров атома квантовые эффекты в нем могут переходить в классическую механику модели атома Бора", - поясняет Даннинг. Если это действительно так, то накачивая энергию в электронные орбитали с помощью облучения атомов лазером, мы можем перевести движение электронов из пятимерного пространства-времени в четырехмерное и сделать атом классическим - аналогом звезды с планетами.

"Используя ридберговские атомы в высоковозбужденном состоянии и пульсирующие электрические поля, мы смогли управлять движением электронов и привести атом в планетарное состояние", - говорит ведущий автор исследования Барри Даннинг. Группа ученых из Университета Райс, используя лазер, довела уровень возбуждения атома калия до чрезвычайно высоких значений. С помощью тщательно подобранных серий коротких электрических импульсов им удалось привести атом в состояние, в котором "локализованный" электрон обращался вокруг ядра на значительно большем расстоянии. Диаметр электронной оболочки достиг при этом одного миллиметра. По словам Даннинга, электрон оставался локализованным на определенной орбите и вел себя почти как "классическая" частица. (http://ria.ru/science/20080702/ 112792435.html).

При подготовке статьи была использована информация с сайтов:

Наверняка, многие из вас видели гифку или смотрели видео, показывающее движение Солнечной системы.

Ролик , вышедший в 2012 году, стал вирусным и наделал много шума. Мне он попался вскоре после его появления, когда я знал о космосе гораздо меньше, чем сейчас. И больше всего меня смутила перпендикулярность плоскости орбит планет направлению движения. Не то, чтобы это было невозможно, но Солнечная система может двигаться под любым углом к плоскости Галактики. Вы спросите, зачем вспоминать давно забытые истории? Дело в том, что именно сейчас, при желании и наличии хорошей погоды, каждый может увидеть на небе настоящий угол между плоскостями эклиптики и Галактики.

Проверяем ученых

Астрономия говорит, что угол между плоскостями эклиптики и Галактики составляет 63°.

Но сама по себе цифра скучна, да и сейчас, когда на обочине науки адепты плоской Земли, хочется иметь простую и наглядную иллюстрацию. Давайте подумаем, как мы можем увидеть плоскости Галактики и эклиптики на небе, желательно невооруженным взглядом и не отдаляясь далеко от города? Плоскость Галактики - это Млечный путь, но сейчас, с изобилием светового загрязнения, увидеть его не так просто. Есть ли какая-то линия, примерно близкая к плоскости Галактики? Есть - это созвездие Лебедя. Оно хорошо видно даже в городе, а найти его просто, опираясь на яркие звезды: Денеб (альфа Лебедя), Вегу (альфа Лиры) и Альтаир (альфа Орла). "Туловище" Лебедя примерно совпадает с галактической плоскостью.

Хорошо, одна плоскость у нас есть. Но как получить наглядную линию эклиптики? Давайте подумаем, что такое вообще эклиптика? По современному строгому определению эклиптика - это сечение небесной сферы плоскостью орбиты барицентра (центра массы) Земля-Луна. По эклиптике в среднем движется Солнце, но у нас нет двух Солнц, по которым удобно построить линию, да и созвездие Лебедя при солнечном свете не будет видно. Но если вспомнить, что планеты Солнечной системы тоже движутся приблизительно в той же плоскости, то, получается, что парад планет как раз примерно покажет нам плоскость эклиптики. И сейчас в утреннем небе как раз можно наблюдать Марс, Юпитер и Сатурн.

В результате, в ближайшие недели утром до восхода Солнца можно будет очень наглядно видеть вот такую картину:

Которая, как это ни удивительно, прекрасно согласуется с учебниками астрономии.

А гифку правильнее рисовать так:


Источник: сайт астронома Rhys Taylor rhysy.net

Вопрос может вызвать взаимное положение плоскостей. Летим ли мы <-/ или же <-\ (если смотреть с внешней стороны Галактики, северный полюс вверху)? Астрономия говорит, что Солнечная система движется относительно ближайших звезд в направлении созвездия Геркулеса, в точку, расположенную недалеко от Веги и Альбирео (бета Лебедя), то есть правильное положение <-/.

Но этот факт, увы, "на пальцах" не проверить, потому что, пусть и сделали это двести тридцать пять лет назад, но использовали результаты многолетних астрономических наблюдений и математику.

Разбегающиеся звезды

Как вообще можно определить, куда движется Солнечная система относительно близких звезд? Если мы можем на протяжении десятков лет фиксировать перемещение звезды по небесной сфере, то направление движения нескольких звезд скажет нам, куда мы движемся относительно них. Назовем точку, в которую мы движемся, апексом. Звезды, которые находятся недалеко от него, а также от противоположной точки (антиапекса), будут двигаться слабо, потому что они летят на нас или от нас. А чем дальше звезда находится от апекса и антиапекса, тем больше будет ее собственное движение. Представьте, что вы едете по дороге. Светофоры на перекрестках впереди и позади не будут сильно смещаться в стороны. А вот фонарные столбы вдоль дороги так и будут мелькать (иметь большое собственное движение) за окном.

На гифке показано перемещение звезды Барнарда, имеющей самое большое собственное движение. Уже в 18 веке у астрономов появились записи положения звезд на промежутке в 40-50 лет, которые позволили определить направление движения более медленных звезд. Тогда английский астроном Уильям Гершель взял звездные каталоги и, не подходя к телескопу, стал вычислять. Уже первые расчеты по каталогу Майера показали, что звезды движутся не хаотично, и апекс можно определить.


Источник: Hoskin, M. Herschel"s Determination of the Solar Apex, Journal for the History of Astronomy, Vol. 11, P. 153, 1980

А с данными каталога Лаланда область удалось серьезно уменьшить.


Оттуда же

Дальше пошла нормальная научная работа - уточнение данных, расчеты, споры, но Гершель использовал правильный принцип и ошибся всего на десять градусов. Информацию собирают до сих пор, например, всего тридцать лет назад скорость движения уменьшили с 20 до 13 км/с. Важно: эту скорость нельзя путать со скоростью солнечной системы и других ближайших звезд относительно центра Галактики, которая равна примерно 220 км/с.

Еще дальше

Ну и, раз мы упомянули скорость движения относительно центра Галактики, необходимо разобраться и тут. Галактический северный полюс выбран так же, как и земной - произвольно по соглашению. Он находится недалеко от звезды Арктур (альфа Волопаса), примерно вверх по направлению крыла созвездия Лебедя. А в целом проекция созвездий на карту Галактики выглядит так:

Т.е. Солнечная система движется относительно центра Галактики в направлении созвездия Лебедя, а относительно местных звезд в направлении созвездия Геркулеса, под углом 63° к галактической плоскости, <-/, если смотреть с внешней стороны Галактики, северный полюс сверху.

Космический хвост

А вот сравнение Солнечной системы с кометой в видео совершенно корректно. Аппарат NASA IBEX был специально создан для определения взаимодействия границы Солнечной системы и межзвездного пространства. И по его данным хвост есть.


Иллюстрация NASA

Для других звезд мы можем видеть астросферы (пузыри звездного ветра) непосредственно.


Фото NASA

Позитив напоследок

Завершая разговор, стоит отметить очень позитивную историю. Создавший в 2012 году исходное видео DJSadhu первоначально продвигал что-то ненаучное. Но, благодаря вирусному распространению клипа, он пообщался с настоящими астрономами (астрофизик Rhys Tailor очень позитивно отзывается о диалоге) и, спустя три года, сделал новый, гораздо более соответствующий реальности ролик без антинаучных построений.
mob_info