Ширина колеи железной дороги в россии и других странах.

Железнодорожная колея, состоит из двух параллельных рельсовых нитей, уложенных на основание, в состав которого входят блоки, брусья и шпалы. Последние изделия изготавливаются из различной древесины, но предпочтение отдаётся сосне. В последнее время всё чаще для этих целей применяется железобетон. Все перечисленные составляющие крепятся с учётом определённого расстояния друг от друга. Рельсовая колея непосредственно направляет колёса подвижного состава, следующего во время движения по криволинейным и прямым участкам дороги. Рельсовая подуклонка и ширина самой колеи считаются основными параметрами всей колеи в целом. Наклон внутренней части колеи в соотношении с верхней плоскостью, состоящей из шпал, в терминологии носит название подуклонка рельсов. Как и во всех инженерных сооружениях, рельсовые пути имеют специальные допуски превышать которые нельзя, для этих целей совершаются периодические осмотры железной дороги. Установленный регламент проведения осмотровых работ предназначен регулирования периодичности их исполнения.

Ширина колеи в России

Стандартная

Ширина колеи железной дороги в России имела в разные времена и на разных путях различные параметры данного показателя. Так первая российская железная дорога, соединяющая Царскосельский вокзал города Санкт-Петербурга, Царское Село и Павловское, была запущена в эксплуатацию в 1837 году. Носила название Царскосельского пути. Ширина рельсовой колеи той поры равнялась значению - 1829 мм. Но уже в 1851 году Россия торжественно открывает Перетербурго-Московскую железную дорогу. После смерти императора Николая Первого в 1855 году, ветка пути становится Николаевской. Как правило, после свершения революции в России начинают переименовывать всё и вся. Не избежала данной участи и Николаевская дорога, начиная с 1923 года, во всех документах она проходит уже, как Октябрьская. Сообщение по ней осуществлялось между Москвой и Санкт-Петербургом, параметр ширины рельсовой колеи равен 1524 мм, отличаясь от значительной части европейских стран, порядка 60 % от общего числа государств в большую сторону на 89 мм. Но, несмотря на все эти описанные различия, данный размер ширины колеи железной дороги на долгие годы в Российской империи и в СССР становится тем самым пресловутым стандартом.

Протяжённость Николаевской дороги составляла шестьсот четыре версты или 645 километров. В качестве сравнения, астрономический расчёт данного пути между Москвой и Санкт-Петербургом равен показателю 598 версты, тогда, как длина шоссейной дороги между назваными городами равнялась 674 вёрстам. Всё это ярко свидетельствует в защиту чисти легенд, связанных со строительством дороги.

Одной из популярных баек заключалась в том, что Николай Первый отдавал все распоряжения, касающиеся строительства будущей Николаевской железной дороги, лично сам. Свидетели подтверждают, что император очертил линию путей сообщения по линейке. Правда, не обошлось без казуса, якобы самодержец, проводя линию дороги, очертил на карте, в районе Бологого один из пальцев своей руки. Государевы указания не обсуждаются, а выполняются. Хотя, на самом деле данный изгиб имеет своё объяснение. В районе Мстинского моста должен был прокладываться путь по прямой, но мощности тогдашних паровозов явно бы не хватило, поскольку перепад природного профиля не позволил бы это сделать, дополнительно пришлось бы цеплять ещё один паровик. Потому пришлось строить путь с изгибом, так называемый, Веребьинский обход, при этом, создавая и новую станцию Оксочи. Сегодня другие времена и другие мощности локомотивов, а кривая железной дороги с большим радиусом позволяет обеспечивать на указанном участке скоростное движение поездных составов. Даже кривые с меньшим радиусом сегодня будут реконструированы. Давно уже нет серпантина Веребьинского обхода, а в станции Оксмочи больше нет надобности, Октябрьская железная дорога стала действительно прямой, как и хотел того российский самодержец. Дорога изначально создавалась с двумя линиями путей.

Что касается ширины рельсовой колеи, то к этому стандарту инженеры обратились из-за экономии, учитывая опыт строительства Царскосельской дороги, а также строительный опыт американских инженеров по созданию железнодорожных путей. Чем шире колея, тем больше потребуется денежных ассигнований. В действительности споров о ширине рельсовой колеи вначале проектирования было очень много. На этом настаивал в своё время американский инженер Уистлер. Европейская колея с размером - 1435 мм российскими спецами была отвергнута по причине отсутствия необходимого уровня устойчивости, а главное, невозможности развивать высокую скорость, а какой же русский человек не любит прокатится с ветерком. Имелись по этому поводу и соображения оборонительного характера. Тогда считалось, что наступающий неприятель не сможет воспользоваться русской железной дорогой из-за разницы в её ширине. Что в большей степени и подтвердилось при ведении военных действий вражескими войсками на территории нашего государства в период первых двух мировых войн. Любители легенд свидетельствуют, что спорам о ширине рельсовой колеи положил конец Николай Первый, ответив на вопрос инженеров о возможности выбора ширины дороги относительно европейского или американского параметра. Решение императора было быстрым, кратким и лаконичным: «Шире американской не надо - дорого, меньше европейского стандарта не следует, рассчитывайте на размер русской телеги.» Что и было создано, в обличии русского стандарта, равного - 1524 мм. Несмотря на то, что это всего лишь легенда, но она родилась на реальных событиях. Ширину колеи российского стандарта применяют В Монголии и по сегодняшний день в Финляндии. Начиная с мая 1970 года, на железной дороге России применяется рельсовая колея с шириной, равная - 1520 мм. Поскольку разница с предыдущим стандартом является незначительной, всего четыре миллиметра, то подвижной состав не подвергался переоборудованию. Однако уже в то время начавшийся переходный период показал, что наши железные дороги сталкивались с серьёзными проблемами, поскольку на подвижном составе, у колёсных пар начался резкий рост износа. До сегодняшнего учёные так и не определили точной взаимосвязи колёсного гребня колёсной пары и рельсовой шириной железной дороги.

Узкая колея

Железная дорога с узкой колеёй может обладать следующими параметрами, например, декавилевскую колею создали во Франции, её ширина равна значению - 500 мм, строилась она первоначально в сельских районах. Проект создавался французским инженером Полем Декавилем. Поскольку он был выходцем из сельской местности, то и приложил свои руки для облегчения крестьянского труда. Основу такой дороги составляли рельсошпальные решётки с металлическими элементами. В вагонетках по таким путям перевозили вручную урожай свёклы. В последующем система модернизировалась и имела широкое применение на полях сражений, во внутренних помещениях оборонительных сооружений доставлялись снаряды непосредственно к орудиям. Горная промышленность Европы тоже использовала подобную колею, перевозя добытую руду. Тяговая сила таких дорог начинала свою модернизацию с гужевой тяги. В Российской империи возможности применения декавилевской колеи было опробовано инженером путей сообщения М. С. Волковым.

Возможности узкоколейных дорог с шириной - 600 мм или 1200 мм нашли своё применение на гражданских или военных объектах. Российские узкоколейные железные дороги имели ширину путей, равную - 750 мм. Все республики Прибалтики тоже применяли подобную ширину колеи на своих предприятиях и сооружениях. Эстония стала использовать такую колею с 1896 года, первый путь соединил города Валга и Пярну. В начале двадцатого столетия ветка с узкой колеёй появилась и в таллиннском порту. В последующем были налажены сообщения с районами Украины и СССР. В Эстонии и по сей день функционирует депо, которое обслуживало составы, работающие на дорогах с узкой колеёй. Сегодня это предприятие обслуживает дизельные составы и обычные локомотивы.

Трамвайная

Трамвайные пути в различных российских городах имеют и разную ширину. Так, в Ростове-на-Дону ширина трамвайных путей равна размеру стандарта европейских железнодорожных путей - 1435 мм. Такие города, как Пятигорск или Калининград применяют трамвайные пути с шириной – 1067 мм. Такая же ширина путей в эстонском Таллине. В германском городе Лейпциге ширина трамвайной колеи равна – 1458 мм, а в Дрездене – 1458 мм. Сегодня на российской территории сохранена пятигорская и калининградская система.

Метро

В российском метрополитене используется такая же ширина путевой колеи, как и на железной дороге в нашем государстве.

Ширина колеи в разных странах

В 1830 году открывается железная дорога по маршруту Манчестер – Ливерпуль, одним из авторов проекта являлся английский инженер Джордж Стефенсон. Размер ширины рельсовой колеи был равен - 1435 мм, что составляло в английских мерах: четыре фута и восемь с половиной дюймов. По истечению шестнадцати лет, указанная ширина колеи становится европейским стандартом. Эта же колея была установлена на железных дорогах в США, в 60 % части европейских стран и в Китае.

Сверхширокая колея

В тридцатых годах девятнадцатого столетия была завершена стройка Большой западной дороги. Ширина её рельсовой колеи была равна значению – 2135 мм. Английским инженером Изамбартом Брунелем, жившему в то бурное время, были сделаны предложения о строительстве сверх широкой колеи. Но его прожектам не суждено было сбыться. В 1945 году разногласиям относительно размеров ширины рельсовой колеи был положен конец английским законодательным органом.

Согласно решению английского парламента, обоснованного по результатам работы специальной парламентской комиссии, эталоном размера ширины рельсовых путей на территории Великобритании становится показатель, равный значению - 1435 мм, и с той поры должен устанавливаться на всех строящихся железнодорожных путях. Дороги, которые не соответствовали принятому стандарту подлежали реконструкции. Интересен и тот факт, что нарушители того принятого закона, полежали штрафу в размере десяти фунтов стерлингов за каждый день существования, каждой обнаруженной сухопутной мили нестандартной дороги.

На этом история создания сверх широкой рельсовой колеи не заканчивается. В 30-х годах. 20 столетия, специалистами третьего рейха была предпринята попытка по разработке сверх ширококолейной скоростной железной дороги, носящей название «Breitspurbahn», ширина её колеи равнялась - 3000 мм. Строительство данной сети дорог планировалось на европейском и в последующем на азиатском континенте. Замысел авторов проекта заключался в связывании территорий Индии и Японии со всей Европой. Для наглядной демонстрации был построен небольшой участок дороги. Инженеры трудились над созданием принципиально нового типа вагонов, тепловозов и паровозов. Осуществить проект не удалось.

В 2001 году в виде горной фуникулёрной дороги для осуществления подъёма горных лыжников была создана «Cairngorm Mountain Railway», её ширина равна – 2000 мм. В Нидерландах такая дорога имела колею, равную - 1945 мм. В Англии максимальное значение ширины достигло - 1880 мм. Максимальная ширина колеи первой российской Царскосельской железной дороги составила - 1829 мм, на территории Франции данный показатель достиг значения – 1750 мм.

История рельсовой колеи

Рельсы и паровозы

В нашем обществе сложилось несколько утилитарное представление о том, что рельсовый транспорт как таковой появился в середине XVIII века с изобретением паровых колёсных машин. При этом в истории остались такие имена гениальных конструкторов как Иван Иванович Ползунов, Джеймс Уатт и Ричард Тревитик. Однако перемещение больших грузов по рельсам имеет более древнюю историю и традиции. Не менее древнюю, чем такое понятие как колея железной дороги.

Немного теории

Для того, чтобы немного более правильно воспринимать необходимость возникновения рельсового транспорта и такого параметра как колея железной дороги стоит немного вспомнить курс физики из той же начальной школы. Из него мы где-то можем вспомнить, что давление на ту или иную поверхность распределяется прямо пропорционально площади, на которую мы воздействуем. В данном случае вполне приемлем пример, когда усилием нашей руки мы не можем отверстие в той же ткани или древесине, но вооружившись иголкой, при той же силе воздействия мы это делаем без особого труда. В несколько ином примере ступая по снегу, мы запросто проваливаемся под свежевыпавший наст. Но если мы наденем на ноги лыжи или иные приспособления, то данная проблема будет решена.

Рельс – слово произошло от многочисленного числа английского слова «rails» - от латинского «regula», что означает прямая палка. Такое техническое решение было изобретено древними римлянами, и начальная ширина между рельсами составляла 143,5 см., что несколько меньше современного значения такого параметра как колея железной дороги для большегрузного рельсового железнодорожного транспорта.

Аналогичная проблема возникала и у наших предков, при транспортировке больших тяжёлых грузов. Грузы просто застревали в том же грунте или песке. С учётом именно этой особенности и обстоятельств наши предки начали располагать сам груз, на какой либо подложке, которая и распределяла общую нагрузку на более большую площадь, чем площадь самого груза, и делала возможность перемещения груза более приемлемой.

Именно таким образом поступили древние греки, когда у них появилась необходимость транспортировать свои морские корабли через Коринфский перешеек. Выложив весь маршрут из каменных плит, смазанных жиром, греки с наименьшими затратами перемещали свои суда в нужном направлении. И здесь возможно впервые стоит упомянуть такое понятие как колея железной дороги, хотя более корректно это необходимо было бы назвать как колея каменной дороги, но сущность понятия и параметра от этого не меняется. В данном случае это был желоб, выдолбленный в каменных плитах по которым и перемещали сами корабли. Правда, в отличие от современных аналогов в качестве движущей силы применяли не паровые локомотивы или упряжки лошадей тяжеловозов, корабли тащили рабы, и если верить древнегреческим историкам это им удавалось довольно не плохо.

Колея железной дороги это строго установленное расстояние между внутренними сторонами уложенного рельса, и являющееся неизменным на всём протяжении данного пути.

Рельсовый транспорт в Европе

Многовековой опыт древних греков и римлян по перемещению больших грузов при помощи рельсов не канул в лету и успешно был реализован в горнорудной промышленности Германии и Англии XVI – XVIII веков. Так в частности на шахтах германской Тюрингии для транспортировки добытой руды, предприниматели начали применять деревянные рельсы, по которым перемещались вагонетки. Особенностью этого проекта являлось то обстоятельство, что отличие от иных аналогичных разработок конструкция колёс вагонеток имели так называемые реборды.

Реборда - от французского слова «reborde» - «гребень», несколько выступающая часть конструкции колеса или шкива, предназначенная для удержания движения колеса или троса в заданном направлении. Расстояние между наружными кромками реборды у железнодорожных колёсных пар соответствует такому параметру как колея железной дороги.

В то же время предприниматели предприятий расположенных на поверхности не стали отставать от своих коллег занимавшихся шахтным бизнесом. И уже в 1603 году для транспортировки добытого угля к потребителям вблизи Ноттигема появляется первая наземная «Уоллатонская вагонная дорога». На ней тоже применялись деревянные рельсы, у которых колея железной дороги была аналогичной той, которая применялась в шахтах, а её протяженность по тем временам была просто колоссальной, целых три с половиной километра. Просуществовала «Уоллатонская вагонная дорога» так же довольно продолжительное время вплоть до закрытия в 1620 году самой шахты.

Отечественный рельсовый транспорт

Не отставали от своих европейских коллег и отечественные изобретатели и бизнесмены. Так в 1755 году на Алтайском горнодобывающем предприятии была построена одна из первых в России узкоколейных рельсовых дорог. Колея железной дороги составляла значительно меньшие размеры, чем это было принято в Европе, и имела всего 650 миллиметров между внутренним расстоянием деревянных рельс. В данном случае такая колея железной дороги была обусловлена шириной, как самой шахтной выработки, так и применением несколько иного метода транспортировки груза.

Так в частности, если на европейских шахтных выработках для транспортировки вагонеток использовались или сами шахтёры или лошади, то на алтайских шахтах вагонетки перемещались при помощи троса протянутого вдоль всего маршрута. При этом сам трос был выполнен в виде замкнутого кольца закреплённого на двух шкивах, вращение которых приводило к перемещению всего троса вдоль всего маршрута. Сами же вагонетки можно было зацепить специальными крючками за кольца, расположенные на тросе с определённым шагом. Шкивы, как и сам трос, приводились в движение парой или тройкой лошадей. Такое решение однозначно давало возможность применения не только меньшей величины такого параметра как колея железной дороги, но и возможность осуществлять торможение вагонетки и изменение направления её движения при непрерывном движении троса.

С отечественный историей железнодорожного транспорта можно ознакомится в .

Чугунный колесопровод

Не менее примечательным моментом в истории отечественных железных дорог является строительство в 1788 году в Пертрозаводстке, на Олонецких горных заводах Чарльза Гаскойна первой в царской России железной дороги. В отличие от многих существовавших в то время в России рельсовых дорог, эта рельсовая дорога была полностью выполнена из чугуна, из-за этого в народе, она была прозвана «Чугунным колесопроводом». Колея железной дороги, по примеру европейских производителей подвижного состава, была установлена в пределах 800 миллиметров. В данном случае этого было вполне достаточно для устойчивой транспортировки руды и отливок из сталеплавильного цеха в сверлильный, где дополнительно обрабатывались отливки стволов пушек. При этом на всём протяжении этой дороги в качестве тягловой силы использовались рабочие.

Эта узкоколейная железная дорога в том или ином виде просуществовала до 1956 года, когда Онежский сталелитейный завод был перепрофилирован в тракторный. А отдельные фрагменты данной дороги были демонтированы и выставлены в Карельском краеведческом музее.

Первые паровозы

Хотя, по мнению многих историков, пальма первенства в изобретении и постройке первого парового локомотива принадлежит англичанину Ричарду Тревитику, однако его проект 1804 года к сожалению не получил должного распространения. И основная проблема была не в самой конструкции парового локомотива, а в конструкции и материале из которого изготавливались рельсы. И если такой параметр железнодорожного полотна как колея железной дороги удалось определить более или менее объективно в 1435 миллиметров, что обеспечивало вполне надёжную устойчивость движения состава, однако проблема возникла с качеством рельс. Так как, на то время основным материалом для их изготовления использовали чугун, то такие чугунные рельсы не всегда выдерживали те нагрузки, которые развивали, как сам паровой локомотив, так и перемещаемые им нагруженные вагоны.

С учётом этого наиболее удачная модель парового локомотива появилась только в 1812 году с лёгкой руки англичанина Джорджа Стеферсона. Его паровой локомотив «Ракета» была настолько удачной конструкции, что выиграл специальные соревнования на участке Манчестер – Ливерпуль, что послужило толчком для многих шахтовладельцев выделить средства на строительство железной дороги Дарлингтон – Стоктоун. При этом рельсы начали изготавливать из стали, а колея железной дороги стала практически стандартом и составила 1435 миллиметров.

Не менее интересным моментом является и то обстоятельство, что именно с этого периода деревянные шпалы под рельсы, начали укладывать не вдоль расположения рельс, а в поперечном, более привычном для нас положении. При этом такая конструкция крепления рельс давала более жёсткое их расположение одной рельсы относительно другой, тем самым колея железной дороги на всём протяжении пути имела меньший разброс этого параметра.

Типы рельс

Рельсы деревянные

Если первые рельсы, изготовленные из дерева, имели один и существенный недостаток это износостойкость, то для его устранения или минимизации, некоторые конструкторы начали покрывать поверхность деревянной рельсы полосами металла. Но более перспективным предложением стало применение вместо металлических полос, уголков изготовленных из железа. В данном случае вертикальная направляющая железного уголка являются направляющими при движении, как парового локомотива, так и самих вагонеток. При этом впервые в практике рельсового транспорта колёса катились по внешней стороне вертикальной полки уголка, а расстояние между этими элементами рельса есть не что иное, как колея железной дороги.

Рельсы чугунные

Приблизительно в 1790 году английский изобретатель Джордж Утрам предложил изготавливать рельсы в виде чугунных пластин с двойными направляющими. Где колея железной дороги уже по самой конструкции рельса, была неизменной и составляла уже знакомую нам величину в 1435 миллиметров, что в свою очередь определяло неизменность такого параметра как колея железной дороги на всём протяжении уложенной колеи. Такие рельсы довольно легко монтировались в цельный путепровод и при необходимости могли с минимальными трудозатратами быть демонтированы и перенесены в иное место по необходимости. Не менее примечательным моментом такой конструкции было и то обстоятельство, что возможность изготовления таких плит методом литья решала и такую проблему как их взаимозаменяемость и стандартизация данной конструкции. В связи с этим данный тип рельс получил довольно большое распространение как на угольных шахтах и открытых рудниках, так и на промышленных предприятиях в качестве транспортного средства перемещения сырья и материалов внутри производственных помещений.

Головчатые рельсы Джессона

Однако более революционным изобретением этого периода стала работа английского инженера-механика Стивена Джессона, работавшего на угольных рудниках Лоуберроу. Немного разбираясь в теоретической механике и такой научно-технической дисциплине как сопротивлении материалов, Джессон предложил практически современную конструкцию рельса, головчатого типа, где колея железной дороги определялась так же по расстоянию между внутренними сторонами головки рельса.

При этом такая конструкция обеспечивала не только приемлемую технологичность изготовления и монтажа этого типа рельс, но и давала довольно существенную экономию самого металла. Так в частности в конструкции Джессона, направляющая реборда, располагалась не по всей длине рельса, а только на колёсной паре парового локомотива или грузопассажирского вагона. При этом сама форма рельса вместо чисто прямоугольной формы, имеет форму «двутавра», что существенно снижает не только вес самого рельса, но и снижает расход металла на его изготовление. Но не зависимо от этого колея железной дороги осталась не изменой величиной в 1435 миллиметров, так как при помощи специальных зажимов, так называемых «глухарей», обе рельсы довольно жёстко крепились к набору уложенных шпал.

Металлургия

По мнению многих историков, именно разработка и широкое применение рельса конструкции Джессона дало существенный толчок развитию металлургии. Ведь перед её специалистами были поставлены задачи не только по увеличению объёмов производства стали, но и получения соответствующего профиля. С учётом этого уже к середине XVIII века сталь начали производить наиболее прогрессивными методами, такими как бессемеровский, мартеновский и конверторный. А само производство стальных рельс, освоили на прокатных станах. Что в свою очередь давало более стабильные значения как самой геометрии рельса, так и такого параметра, как колея железной дороги. При этом первый прокатный стан, для масштабного промышленного производства рельс был сконструирован ещё в 1828 году английским инженером Нилом Беркиншау. На первой конструкции этого прокатного стана, было возможно получение стальных рельс, длинной в 4.5 метра. Однако после соответствующей его модернизации этот показатель на прокатном стане был доведен до 7.25 метра, что давало существенное сокращение трудозатрат при монтаже рельсового пути или при проведении ремонтных работ. И здесь не следует забывать, что при более длинной базе единицы рельсового полотна, такой показатель, как колея железной дороги так же имеет более стабильные показатели допустимого предела отклонений.

Ещё одной проблемой, которую необходимо было решить металлургам в вопросах производства рельсовой продукции это её прочность и износостойкость. Первые рельсы, изготовленные из углеродистой стали, имели довольно низкие показатели этих параметров, которые помимо всего прочего существенно влияли и на такой показатель как колея железной дороги.

Так, что со временем для устранения этих недостатков металлурги разработали специальные легированные сплавы для производства как самих рельс, так и основных элементов подвижного состава. К последним в первую очередь следует отнести колёсные пары подвижного состава, которые в значительной степени влияют на такой параметр как колея железной дороги.

С учётом этого, металл из которого изготавливают эти изделия, содержат в определённом процентном содержании такие легирующие металлы как марганец, ванадий, титан и цирконий. При этом с технологической точки зрения для получения требуемых параметров металла немаловажную роль играет и термическая обработка готовых изделий. Так в частности по разработанным технологиям глубина термической обработки должна составлять не менее 8 – 10 миллиметров от поверхности изделия, а в самой макроструктуре металла не допускаются микротрещины, пустоты и посторонние включения. Хотя данные показатели химического состава и физических свойств металла существенно не влияют на такой показатель как колея железной дороги, но они в значительной степени определяют качество и надёжность основных элементов подвижного состава.

Как выбрали стандарт колеи?

По мнению многих специалистов железнодорожников остаётся определённой загадкой, по какой именно причине в качестве стандарта такого параметра как колея железной дороги был выбран размер именно 4"81/2" или 1435 миллиметров. Существует немало версий появления этого размера, но практически все они не имеют строго научного и документального подтверждения.

При этом многие из этих специалистов считают, что увеличение такого параметра как колея железной дороги до величины 51/2" или даже до 6", имело бы хоть какое-то экономически целесообразное обоснование. Ведь более широкая колея железной дороги дала бы возможность более рациональное размещение механизмов парового локомотива, в частности при той же его длине можно было существенно увеличить объём парового котла. Не говоря уже о большей устойчивости подвижного состава и реальной возможности увеличения скорости движения, в тех же грузовых или пассажирских вагонах, возможно, было бы большего количества грузов. Здесь достаточно вспомнить довольно амбициозный проект начала 30 - х годов разрабатывавшийся в Германии «Breitspurbahn», где колея железной дороги составляла не много не мало, а 3000 миллиметров. И это были не только фантазии немецких конструкторов по созданию трансконтинентальной железной дороги начинавшейся в столице Третьего рейха и пересекавшей всю Европу и Азию с целью соединить Берлин с Японией и Индией.

Так, что данный вопрос не является абсолютно праздными и носит под собой существенные как технические, так и экономические проблемы.

Где-то с аналогичными проблемами, по определению такого параметра как колея железной дороги столкнулись конструкторы скоростных пассажирских поездов. Ведь при тех же габаритах подвижного состава необходимо было решить многие технические проблемы для возможности движения таких поездов со скоростью гораздо более 320 км/час.

Вопросы стыковки

Не менее интересной проблемой в развитии отечественной железной дороги является вопрос стыковки европейской железнодорожной колеи с колеёй расположенной на территории России. Ведь европейская колея имеет стандартный размер в 1435 миллиметров, при, том, как российская колея железной дороги имеет размер 1520 миллиметров.

С целью обеспечения беспрепятственного перемещения грузопассажирских потоков в такие страны как Польша, Словакия, Венгрия и Румыния на приграничной территории были оборудованы так называемые «стыковочные» узлы, где производится перестановка вагонных тележек одного стандарта на иной. В среднем данная операция занимает до двух – двух с половиной часов. При этом на «стыковочных» узлах задействуются мощные домкраты, поднимающие пассажирские и грузовые вагоны на требуемую высоту. При этом на подвижный состав устанавливаются колёсные пары, на которых колея железной дороги соответствует требуемому размеру.

Устройство рельсовой колеи характеризуется: шириной колеи, подуклонкой рельсов, взаимным расположением рельсов по уровню на прямых и кривых участках, кривизной в плане и профиле.

Шириной рельсовой колеи называется расстояние между внутренними гранями головок рельса, измеренное перпендикулярно к оси пути.

На открытых горных разработках применялись четыре типа колеи: 1520, 1000, 900, 750 мм. Стандартными являются нормальная широкая колея 1520 мм и узкая колея 750 мм. В большинстве зарубежных стран нормальной является колея 1435 мм.

При выборе ширины колеи для рельсового транспорта учитывают грузооборот, расстояние транспортирования, размеры карьера и характеристику применяемого оборудования. Узкая колея применяется в карьерах небольшой мощности, в большинстве случаев при грузообороте не более 2-3 млн. т в год.

На прямых участках пути допускаются отклонения от нормальной ширины для колеи 1520 мм в сторону уширения на 6 мм и в сторону сужения на 2 мм, для колеи 750 мм - соответственно на 4 и 2 мм. На путях с перемещаемой рельсошпальной решеткой на прямых и кривых участках разрешается содержать колею одинаковой ширины 1535 мм с отклонениями по уширению 10 мм и по сужению 4 мм.

При прохождении кривых малого радиуса колесные пары подвижного состава усиленно нажимают на наружный рельс, изнашивая его и расстраивая колею. Этого удается избежать, укладывая у внутренней рельсовой нити контррельсы, которые принимают на себя боковое давление и отжимают колесную пару от наружного рельса. Однако следует иметь в виду, что при установке контррельсов существенно увеличивается сопротивление движению поездов в кривых.

На кривых участках выполняется возвышение наружного рельса над внутренним для компенсации возникающей центробежной силы. Допускаемое возвышение: для широкой колеи - 150 мм, для узкой колеи - 40 мм.

Осуществляется возвышение рельса поднятием на балласт наружных концов шпал, или при большем возвышении, основную площадку земляного полотна устраивают с уклоном. Возвышение наружного рельса производится постепенно.

Для соединения нескольких путей служат стрелочные переводы.

Стрелочным переводом называется устройство, служащее для перевода подвижного состава с одного пути на другой.

Стрелочный перевод состоит из стрелки, крестовины с контррельсами, соединительной части и комплекса переводных брусьев. Стрелочный перевод состоит из остряков (перьев), рамных рельсов, переводной кривой, контррельсов, необходимых для удержания ребер колес при прохождении мертвого пространства, крестовины с сердечником. За крестовиной располагается предельный столбик, указывающий место остановки локомотива при ожидании встречного поезда. Положение предельных столбиков определяет полезную длину пути на станциях и разъездах. Все эти элементы стрелочного перевода можно объединить в три узла: стрелка, крестовинная часть и соединительные пути.

Рамные рельсы, к которым прилегают остряки, являются продолжением путевых рельсов. Они укладываются на специальные подкладки или на сплошные металлические листы. Остряки (рельсы, заостренные с одной стороны), служат для направления поезда на тот или иной путь. При любом положении стрелки один из остряков прижимается к рамному рельсу, а другой отодвигается, образуя зазор для прохода колес подвижного состава. Переводной механизм служит для перевода стрелки из одного положения в другое. Находят применение ручные и электрические приводы переводов, управляемые дистанционно или автоматически. Стрелочные переводы укладываются на переводных брусьях (длиной 2750ч5500 мм), поперечное сечение которых то же, что и шпал. Стрелочный перевод называют правым (левым), если ответвленный путь, считая от стрелки к крестовине отклоняется вправо (влево). Стрелочные переводы бывают симметричными и несимметричными.

Основной точкой, определяющей положение стрелочного перевода является центр перевода - точка пересечения осей соединяемых путей. Основными для стрелочного перевода являются расстояния:

от стыков рамных рельсов до начала остряков - m

от начала остряков до центра стрелочного перевода - a

от центра стрелочного перевода до математического центра крестовины - д

от математического центра крестовины до хвостового стыка крестовины - p

от центра стрелочного перевода до хвостового стыка крестовины - b

Расстояние = a + д называют теоретической длиной стрелочного перевода, а = m + a + д + p - полной практической длиной стрелочного перевода. Длину стрелочного перевода определяет главный параметр стрелочного перевода - угол, под которым пересекаются грани сердечника крестовины (угол пересечения осей пересекающихся путей) - угол б. Он определяет марку крестовины М, которая представляет собой отношение основания сердечника крестовины к его высоте.

M = 2 tg ? tg б

На карьерном транспорте широкой колеи применяют крестовины марок 1: 9 (? 28 м) и 1: 11 (? 32 м), узкой - 1: 7 (длина? 12) и 1: 9 (длина? 13 м).

При переходе с меньшей марки (например с 1: 11) на большую (1: 9) уменьшается длина стрелочного перевода, но и снижается безопасность движения. Поэтому скорость движения на ответвляющийся путь по стрелочным переводам с крестовиной марки 1: 11, должна быть не более 40 км/ч (для рельсов типа Р75, Р65 - 50 км/ч), а по стрелочным переводам с крестовиной марки 1: 9 - 25 км/ч.

Устройство рельсовой колеи тесно связано с конструкцией и размерами колесных пар подвижного состава. Колесная пара состоит из стальной оси, на которую наглухо насажены колеса, имеющие для предотвращения схода с рельсов направляющие гребни. Поверхность катания колес подвижного состава в средней части имеет коничность 1/20, которая обеспечивает более равномерный износ, большее сопротивление горизонтальным силам, направленным поперек пути, меньшую чувствительность к неисправностям его и препятствует появлению желоба на поверхности катания, затрудняющего прохождение колесных пар по стрелочным переводам. В соответствии с этим и рельсы устанавливаются также с подуклонкой 1/20, что при деревянных шпалах достигается за счет клинчатых подкладок, а при железобетонных - соответствующим наклоном поверхности шпал в зоне опирания рельсов. Расстояние между внутренними гранями головок рельсов называется шириной колеи . Эта ширина складывается из расстояния между колесами (1440 + 3 мм), двух толщин гребней (от 25 до 33 мм) и зазоров между колесами и рельсами, необходимых для свободного прохождения колесных пар. Ширина нормальной (широкой) колеи в прямых и кривых участках пути с радиусом более 349 м принята в СССР 1520 мм с допусками в сторону уширения б мм и в сторону сужения 4 мм. До 1972 г. нормальной на наших дорогах считалась ширина колеи 1524 мм; сужение ее до 1520 мм принято для уменьшения зазора между колесами и рельсами, что при возросших скоростях движения способствует уменьшению расстройств пути.
В соответствии с ПТЭ верх головок рельсов обеих нитей пути на прямых участках должен быть в одном уровне Разрешается на прямых участках пути на всей протяженности каждого из них содержать одну рельсовую нить на 6 мм выше другой.
При сооружении пути стыки на обеих рельсовых нитях располагают точно один против другого по па-угольнику, что по сравнению с расположением стыков вразбежку уменьшает число ударов колесных пар о рельсы, а также позволяет заготавливать и менять рельсошпальную решетку целыми звеньями с помощью путеукладчиков.
Для того чтобы каждая колесная пара не могла поворачиваться вокруг вертикальной оси, колесные пары вагона или локомотива соединяют по две и более жесткой рамой. Расстояние между крайними осями, соединенными рамой, называется жесткой базой, а между крайними осями вагона или локомотива - полной колесной базой. Жесткое соединение колесных пар обеспечивает устойчивое положение их на рельсах, но в то же время затрудняет прохождение в кривых малого радиуса, где возможно их заклинивание. Для облегчения вписывания в кривые современный подвижной состав выпускают на отдельных тележках с небольшими жесткими базами.


:
а - электровоза ВЛ8, б - одной секции тепловоза ТЭЗ, в - паровоза серии ФД,
г - четырехосного полувагона

Особенности устройства пути в кривых

В кривых участках устройство пути имеет ряд особенностей, основными из которых являются: возвышение наружного рельса над внутренним, наличие переходных кривых, уширение колеи при малых радиусах, укладка укороченных рельсов на внутренней рельсовой нити, усиление пути, увеличение расстояния между осями путей на двух- и многопутных линиях.
Возвышение наружного рельса предусматривается при радиусе кривой 4000 м и менее для того, чтобы нагрузка на каждую рельсовую нить была примерно одинаковой с учетом действия центробежной силы, для равномерного износа наружного и внутреннего рельсов, а также погашения центробежного ускорения, отрицательно влияющего на комфортность езды пассажиров. Размер возвышения зависит от скорости движения поездов и радиуса кривой и обычно не превышает 180 мм (в России - 150 мм).
Известно, что при следовании подвижного состава по кривой радиусом R возникает центробежная сила

где m - масса единицы подвижного состава;
G- вес единицы подвижного состава;
g - ускорение силы тяжести

При возвышении наружного рельса на величину h появляется составляющая сила веса Н, направленная внутрь кривой.

Схема сил, действующих на подвижной состав в кривой при возвышении наружного рельса

Из рисунка понятно, что отношение H/G равно отношению h/s 1. Следовательно Н = Gh/s 1 .
Для одинакового давления на рельсовые нити необходимо, чтобы Н уравновешивала I, тогда равнодействующая N будет перпендикулярна наклонной плоскости пути.
Учитывая, что угол α мал и при максимальном допускаемом возвышении наружного рельса 150 мм cos α = 0,996, можно принять, что Н=I .
Тогда

Откуда

Подставляя s 1 =1,6м, g=9,81 м/с 2 и выражая скорость v в км/ч, а радиус R в метрах, получим возвышение в мм
Поскольку в реальных условиях по кривым проходят поезда разной массы Q i , и с различными скоростями V i , то для равномерного износа рельсов в приведенную формулу подставляют среднюю квадратическую скорость

При h=2,5v ср 2 /R в поездах, следующих со скоростями выше v ср, на пассажиров и грузы будет действовать непогашенное ускорение, равное разнице между центробежным ускорением v 2 /R и направленным к центру кривой ускорением gh/s 1
На дорогах бывшего СССР допускаемое непогашенное ускорение составляет 0,7 м/с 2 и лишь в исключительных случаях 0,9 м/с 2 . При движении поездов со скоростью менее v ср нагрузка на внутренний рельс будет больше, чем на наружный.
Для обеспечения плавного вписывания подвижного состава круговые кривые сопрягаются с прямыми участками с помощью переходных кривых. Между смежными кривыми на железной дороге предусматриваются прямые вставки минимальной величиной от 30 до 150 м в зависимости от категории линии и направления кривых (в одну или в разные стороны).
Устройства переходных кривых связано с необходимостью плавного сопряжения кривой с примыкающей прямой как в плане, так и в профиле. Переходная кривая в плане представляет собой кривую переменного радиуса, уменьшающегося от ∞ (бесконечно большого) до R - радиуса круговой кривой с уменьшением кривизны пропорционально изменению длины. Кривая, обладающая таким свойством, представляет собой радиоидальную спираль, уравнение которой выражается в виде ряда

где С - параметр переходной кривой (С=lR)

В связи с тем что длина переходной кривой l мала по сравнению, с С , практически достаточно ограничиться двумя первыми членами ряда приведенной формулы. В профиле переходная кривая в обычных условиях представляет собой наклонную линию с однообразным уклоном i = h/l.


. НПК - начало переходной кривой. КПК - конец переходной кривой

Уширение колеи производится для обеспечения вписывания подвижного состава в кривые. Поскольку колесные пары закреплены в раме тележки таким образом, что в пределах жесткой базы они всегда параллельны между собой, в кривой только одна колесная пара может расположиться по радиусу, а остальные будут находиться под углом Это вызывает необходимость увеличения зазора между гребнями колес и рельсами во избежание заклинивания колесных пар. Для свободного вписывания двухосной тележки в кривую необходимая ширина колеи:

S c =q max +f н +4


где f н - стрела изгиба кривой по наружной нити при хорде 2λ ;
q max - максимальное расстояние между наружными гранями гребней колес;
4 - допуск по сужению колеи, мм.


Установлены следующие нормы ширины колеи в кривых:
при R≥ 350 м - 1520 мм;
при R = 349-300 м- 1530 мм,
при R≤ 299 м -1535 мм.

Укладка укороченных рельсов во внутреннюю нить необходима для исключения разбежки стыков. Поскольку внутренняя рельсовая нить в кривой короче наружной, то укладка, в нее рельсов той же длины, что и в наружную, вызовет забегание стыков вперед на внутренней нити. Для устранения разбежки стыков при каждом радиусе кривой необходимо иметь свою величину укорочения рельса. В целях унификации применяют стандартные укорочения рельсовых звеньев длиной 25 м на 80 и 160 мм. Общее число укороченных рельсов n , требующихся для укладки в кривой,

n = e/k,

Где e - общее укорочение,
k - стандартное укорочение одного рельса
Укладку укороченных рельсов во внутренней нити чередуют с укладкой рельсов нормальной длины так, чтобы забег стыков не превышал половины укорочения, т. е. 40; 80 мм.
Усиление пути в кривых производится при R<1200 м для обеспечения необходимой равнопрочности с примыкающими прямыми. Для этого увеличивают число шпал на километр, уширяют балластную призму с наружной стороны кривой, ставят несимметричные подкладки с большим плечом в наружную сторону, отбирают наиболее твердые рельсы. В круговых кривых на двух- и многопутных линиях увеличивается расстояние между осями путей в соответствии с требованиями габарита, что достигается в пределах переходной кривой внутреннего пути за счет изменения ее параметра С.

Выписка из Правил технической эксплуатации железных дорог Российской Федерации

Глава III. Сооружения и устройства путевого хозяйства. План и профиль пути
3.4. Железнодорожный путь в отношении радиусов кривых, сопряжения прямых и кривых, крутизны уклонов должен соответствовать утвержденному плану и профилю линии.
3.5. Станции, разъезды и обгонные пункты, как правило, должны располагаться на горизонтальной площадке; в отдельных случаях допускается расположение их на уклонах, не превышающих 0,0015; в трудных условиях допускается увеличение уклонов, но, как правило, не более чем до 0,0025.
В особо трудных условиях на разъездах и обгонных пунктах продольного или полупродольного типа, а с разрешения МПС и на промежуточных станциях, на которых не предусматривается маневров и отцепки локомотива или вагонов от состава, допускаются уклоны более 0,0025 в пределах станционной площадки. Допускаются также в особо трудных условиях с разрешения МПС уклоны более 0,0025 при удлинении приемо-отправочных путей на существующих станциях, при условии принятия мер против самопроизвольного ухода вагонов или составов (без локомотивов).
Для предотвращения самопроизвольного ухода вагонов или составов (без локомотива) на станциях, разъездах и обгонных пунктах вновь построенные и реконструированные приемо-отправочные пути, на которых предусматривается отцепка локомотивов от вагонов и производство маневровых операций, должны иметь, как правило, продольный профиль с противоуклонами в сторону ограничивающих стрелок и соответствовать нормативам на его проектирование.
В необходимых случаях для предупреждения самопроизвольного выхода вагонов на другие пути должно предусматриваться устройство предохранительных тупиков, охранных стрелок, сбрасывающих башмаков или стрелок.
Во всех случаях расположения станций, разъездов и обгонных пунктов на уклонах должны быть обеспечены условия трогания с места поездов установленной весовой нормы.
3.6. Станции, разъезды и обгонные пункты, а также отдельные парки и вытяжные пути должны располагаться на прямых участках. В трудных условиях допускается размещение их на кривых радиусом не менее 1500 м.
В особо трудных условиях допускается уменьшение радиуса кривой до 600 м, а в горных условиях - до 500 м.
3.7. План и профиль главных и станционных путей, а также подъездных путей, принадлежащих железной дороге, должны подвергаться периодической инструментальной проверке.
Организация работ по инструментальной проверке плана и профиля путей, изготовлению соответствующей технической документации, а также составлению масштабных и схематических планов станций возлагается на службы пути железных дорог с привлечением для выполнения этих работ проектных институтов, проектно-изыскательских и проектно-сметных групп.
Дистанции пути должны иметь:
  • чертежи и описания всех имеющихся на дистанции сооружений и устройств путевого хозяйства, а также соответствующие стандарты и нормы;
  • масштабные и схематические планы станций, продольные профили всех главных и станционных путей, сортировочных горок, а также подъездных путей, где обращаются локомотивы дороги.
Продольные профили сортировочных горок, подгорочных и вытяжных путей на сортировочных, участковых и грузовых станциях проверяются не реже одного раза в три года, на остальном протяжении станционных путей профиль проверяется не реже одного раза в 10 лет. Продольный профиль главных путей на перегонах проверяется в период проведения капитального и среднего ремонта путей. По результатам проверок устанавливаются конкретные сроки производства работ по выправке профилей. Участки, на которых производится реконструкция пути и другие работы, вызывающие изменения плана и профиля, проверяются исполнителями работ после их окончания с представлением в дистанцию пути, а на станциях и начальнику станции соответствующей документации.
При возведении на территории станции новых объектов, расширении или переносе существующих любая организация, выполняющая такие работы, должна незамедлительно передавать начальнику дистанции пути и начальнику станции исполнительную документацию, определяющую привязку объекта к существующему развитию станции.

Основные нормы устройства и содержания рельсовой колеи бесстыкового и звеньевого пути совпадают.

Главным требованием при проектировании и устройстве рельсовой колеи является обеспечение безопасности движения поездов с установленными скоростями при возможном минимуме сил взаимодействия колеса и рельсовой плети, снижении интенсивности накопления остаточных деформаций и расходов на техническое обслуживание и ремонт бесстыкового пути.

Путь и подвижной состав представляют собой единую механическую систему, составные части которой работают взаимосвязано и взаимозависимо.

Железнодорожные экипажи состоят из неподрессоренной и обрессоренной частей. Массу ходовых частей подвижного состава, непосредственно взаимодействующую с рельсами и отделенную от остальной массы экипажа упругими связями (например, рессорами), называют неподрессоренной массой. Остальная часть экипажа считается обрессоренной массой.

Обе эти части при движении экипажей (локомотивы, вагоны) совершают сложные колебания как относительно пути, так и друг друга. Колебания возникают в основном из:за неровности пути и неровности на колесах, а также зависят от режима тяги, сопротивления движению колес и ряда других причин.

Вертикальные силы воздействия на рельсовые плети колес движущегося по пути локомотива или вагона складываются из собственного веса подвижного состава, приходящегося на одно колесо (статическая нагрузка), и дополнительных вертикальных сил, возникающих при колебаниях надрессорного строения и неподрессоренных масс, вызванных в том числе неровностями пути и колес.

Все перечисленные вертикальные силы имеют различную природу и свои особенности. Постоянна во времени только статическая нагрузка, а все остальные силы имеют вероятностную природу.

Помимо вертикальных сил подвижной состав передает на путь также горизонтальные поперечные и продольные силы.

При движении экипажей в прямых участках пути возникают боковые силы , связанные с вилянием подвижного состава. Силы, действующие на кузов и передающиеся через раму экипажа на колесные пары, называются рамными . Боковое воздействие колеса на рельсовую плеть состоит из силы нажатия гребня на головку рельса и сил трения, возникающих при поперечном скольжении колеса по рельсу.

Таким образом, боковое воздействие колеса на рельс в прямых участках пути может быть найдено как алгебраическая сумма всех этих сил.

При движении экипажа в кривой возникают дополнительные горизонтальные силы - центробежная сила и направляющее усилие.
Центробежная сила

J = Q/gV 2 /3,6 2 R

где Q - вес экипажа, Н;
g - ускорение свободного падения, 9,81 м/ с 2 ;
V - скорость движения, км/ч;
R - радиус кривой, м;
3,6 - коэффициент перехода между скоростью в км/ч и в м/с.
Центробежная сила J должна компенсироваться силой Т, возникающей из:за устройства возвышения наружного рельса в кривой

T = h/SQ

где h - возвышение наружного рельса, мм;
S - расстояние между кругами катания колес, мм.
В связи с действием сил Т, J и сил трения скольжения колес по рельсам (рис. 2.17) возникают направляющие силы Y 1 , Y 2 , которые поворачивают тележки.

Совместное действие этих сил может быть заменено их алгебраической суммой F нп = J + T. Если центробежная сила J полностью компенсируется силой Т, то F нп = J + T = 0.

Если F нп? 0, то возникают дополнительные поперечные силы U поп, пропорциональные величинам непогашенного поперечного ускорения

Y доп = ba нп

где b - коэффициент, учитывающий установку тележки в рельсовой колее;
анп - непогашенное поперечное ускорение в м/с 2 , имеет вид:

а нп = V 2 /3,6 2 R – gh/S

В зависимости от знака непогашенного поперечного ускорения может возникнуть перегрузка наружной или внутренней рельсовой плети.

Таким образом, в кривом участке пути направляющее усилие, боковое и рамное воздействия зависят от центробежной силы, которая, в свою очередь, пропорциональна величине непогашенных горизонтальных ускорений.

При прохождении по пути подвижного состава возникают и силы, действующие вдоль пути. Вызываемое ими продольное перемещение рельсов относительно шпал или всей путевой решетки в балласте называется угоном пути.

Среди многих факторов, приводящих к угону пути, наиболее значимыми являются сопротивление движению поезда, перемещение рельсов относительно опор вследствие изгиба рельсов под движущейся нагрузкой, торможение подвижного состава и ряд других.

Ранее были рассмотрены вопросы распределения продольных температурных напряжений по длине рельсовой плети (см. рис. 1.1). Если на длине плети имеются участки с плохо закрепленными промежуточными скреплениями (незакрепленными или слабо закрепленными клеммами), то при проходе поезда на этих участках происходят местные подвижки плетей, приводящие к образованию на их концах значительных дополнительных сжимающих или растягивающих плеть сил угона. Складываясь с продольными температурными силами, силы угона могут вызвать потерю устойчивости бесстыкового пути.

Кратко рассмотрев действующие на бесстыковой путь при проходе по нему подвижного состава вертикальные и продольные силы, перейдем к вопросам устройства рельсовой колеи бесстыкового пути.

Очертания рельсовых нитей в прямых участках пути определяются основными нормативами, касающимися устройства и содержания рельсовой колеи относительно направления в плане, ее ширины, положения рельсовых нитей по уровню, подуклонки рельсов.

Путь в плане должен соответствовать проектному положению. Положение рельсовых плетей в плане нормируется и оценивается в зависимости от установленных на участке скоростей движения поездов по разности смежных стрел изгиба рельсовых плетей, измеряемых от середины хорды длиной 20 м.

Разность смежных стрел в этом случае не должна превышать:

  • при скоростях 81-140/71-90 км/ч - 10 мм;
  • при скоростях 61-80/61-70 км/ч - 15 мм;
  • при скоростях 41-60 км/ч - 20 мм;
  • при скоростях 16-40 км/ч - 25 мм;
  • при скоростях 15 км/ч - 30 мм.

Разность смежных стрел изгиба может проверяться также от середины хорды длиной 4, 10, 15, 25 и 30 м.

При направленной внутрь колеи короткой неровности в плане в прямых участках пути по любой, а в кривых участках пути - по наружной рельсовой нити разность смежных стрел изгиба, измеряемых от середины хорды длиной 4 м, не должна превышать:

  • 8 мм при скоростях до 140 км/ч;
  • 9 мм при скоростях до 120 км/ч; 14 мм при скоростях до 60 км/ч;
  • 15 мм при скоростях до 40 км/ч; 18 мм при скоростях до 15 км/ч.
  • При разности стрел более 18 мм движение поездов закрывается.

Расстояние между внутренними рабочими гранями головок рельсов, измеренное на уровне 13 мм ниже поверхности катания, называется шириной рельсовой колеи .

По направлению выравнивают одну рельсовую нить (рихтовочную), а другую - устанавливают по шаблону в пределах допусков по ширине колеи.

Если на прямом участке пути поставить колесную пару так, чтобы гребень одного колеса был прижат к рельсу, то между гребнем второго колеса и рабочей гранью головки второго рельса будет зазор? (рис. 2.18). При большом зазоре? колеса опираются на рельсы узкой полоской, что может вызвать проваливание колес внутрь колеи. Если зазора не будет вообще, может возникнуть заклинивание колесной пары в рельсовой колее.

Пример 2.1. Определим ширину рельсовой колеи, при которой возможен провал колес внутрь колеи. Из рис. 2.18 видно, что

S – (T + 2q + 2?)

где S - ширина рельсовой колеи в прямом участке пути, мм;
T - насадка колес, мм;
q - толщина гребня, мм;
? - утолщение гребня выше расчетной плоскости, равное для вагонных колес 1 мм, для локомотивных колес - 0 мм.

На рис. 2.19 показана колесная пара в момент, когда шестимиллиметровая фаска на колесе совпадает с началом закругления головки рельса. Можно считать, что такое положение колеса является началом его проваливания в рельсовой колее.

Для вагонной колесной пары проваливание может произойти при ширине колеи

S = 25 + 1 + 1437 + 130 – 6 = 1574 мм

где 25 - минимально допустимая толщина изношенного гребня, мм;
1 - расстояние от нерабочей грани гребня на расчетном уровне до вертикали, от которой отсчитывается насадка колесной пары, мм;
1437 - минимальная величина насадки колесной пары, мм;
130 - полная ширина вагонного колеса, мм;
6 - ширина фаски на наружной грани колеса, мм;
13 - горизонтальное расстояние от начала закругления головки рельса до ее рабочей грани, мм.

Недопустимой считают такую ширину колеи, при которой точка перехода коничности поверхности катания колеса 1/20 в 1/7 совпадает с началом закругления головки рельса, поскольку в этом случае возможно распирание рельсовой колеи. Это может произойти при ширине колеи 1574 – 24 = 1550 мм (см. рис. 2.19).

Если учесть изгиб вагонной оси и упругое уширение колеи под поездной нагрузкой, то становится очевидной обоснованность существующего запрета на ширину колеи более 1548 мм.

Пример 2.2. Определим ширину рельсовой колеи, при которой возможно заклинивание колесной пары в колее.

Опасный предел ширины колеи по ее сужению определяется тем, что при наибольшем расстоянии между рабочими гранями гребней вагонных колес 1443+2?33+2?1=1511 мм при ширине колеи 1511 мм возможно
заклинивание колесной пары. Поэтому ширина рельсовой колеи в прямых менее 1512 мм не допускается.

Ранее указывалось, что процесс виляния колес подвижного состава сопровождается возникновением сил трения скольжения и сил воздействия гребней колес на рельсы при набегании. Первые относительно невелики, однако вторые могут достигать величин 30-40 кН. Эти силы зависят от скорости набегания колес на рельсы при вилянии, которая будет тем выше, чем больше зазор в рельсовой колее? (см. рис. 2.18).

Номинальная ширина рельсовой колеи в прямых и кривых участках бесстыкового пути радиусом 350 м и более составляет 1520 мм; в кривых участках пути радиусом менее 350 м до 300 м включительно - 1530 мм.
Для ширины колеи 1520 мм предусматриваются два вида допусков по ширине колеи в зависимости от скоростей движения поездов: +8, –4 мм - при скоростях движения более 50 км/ч и +10, –4 мм - при скоростях движения 50 км/ч и менее.

Верх головок обеих рельсовых нитей на прямых участках должен быть на одном уровне. Разрешается содержать путь с возвышением по уровню одной рельсовой нити над другой 6 мм. Длина такого прямого участка должна быть не менее 200 м, за исключением участков, расположенных между смежными кривыми одного направления.

При возвышении одной рельсовой нити на 6 мм экипаж немного наклонится, что приведет к возникновению боковой силы, которая слегка прижмет колеса к пониженной рельсовой нити и затруднит их виляние. Поскольку эта рельсовая нить является рихтовочной, то прижимающееся к ней колесо будет двигаться более плавно.

На двухпутных линиях выше ставят бровочную рельсовую нить, чтобы рихтовочной стала более устойчивая междупутная рельсовая нить.
На однопутных линиях при проведении очередного среднего ремонта, как правило, меняют рихтовочную нить.

Возвышение одной рельсовой нити над другой на прямом участке должно заканчиваться не ближе 25 м от начала возвышения в кривой, если повышенная нить на прямой совпадает по уровню с пониженной нитью в кривой.

Если на прямых участках пути с возвышением одной рельсовой нити над другой расположено мостовое полотно с ездой на балласте, то на нем также должно быть сохранено это возвышение. На мостах с ездой поверху и мостовыми брусьями возвышение допускается при длине моста не более 25 м. На мостах большей длины с мостовыми брусьями, в тоннелях и на подходах к ним протяженностью 25 м, а также на стрелочных переводах в прямых участках пути допускать повышение од: ной рельсовой нити над другой на 6 мм запрещается.

Номинальный уклон отвода по уровню от нормы 6 мм к нулевому положению не должен превышать 1.

Допустимые отклонения от норм расположения рельсовых плетей по уровню составляют ±6 мм. Если, например, сначала левая рельсовая плеть выше правой на 6 мм, а затем наоборот, то минимальное расстояние между такими превышениями должно быть не менее 20 м, так как при меньшем расстоянии образуется перекос пути. К перекосам пути относятся резкие изменения положения рельсовых плетей по уровню в разные стороны при расстоянии между вершинами пик 20 м и менее.

При таком перекосе возможно обезгруживание одного из колес вагона, что в сочетании с большими боковыми силами может привести к сходу подвижного состава.

На рис. 2.20 показано положение тележки при проходе через перекос, измеряемый на базе тележки, когда центры обоих колес задней и левого колеса передней колесной пары находятся в одной горизонтальной плоскости, а правое колесо передней колесной пары опустилось.
В этом случае нагрузка на него от рессоры несколько уменьшается, т.е. происходит его частичная разгрузка. Если такая разгрузка совпадает с сильным боковым прижатием гребня колеса к головке рельса, то оно, вращаясь, может подняться на головку рельса, а затем и сойти с нее.

ОБЩИЕ СВЕДЕНИЯ. УСТРОЙСТВО Рельсовой Колеи. Устройство рельсовой колеи тес­но связано с конструкцией и разме­рами колесных пар подвижного сос­тава. Колесная пара состоит из стальной оси, на которую наглухо насажены колеса, имеющие для предотвращения схода с рельсов направляющие гребни. Поверхность катания колес подвиж­ного состава в средней, части имеет коничность 1/20, которая обеспечи­вает более равномерный износ, большее сопротивление горизонталь­ным силам, направленным поперек пути, меньшую чувствительность к неисправностям его и препятст­вует появлению желоба на поверх­ности катания, затрудняющего про­хождение колесных пар по стрелоч­ным переводам. В соответствии с этим и рельсы устанавливаются также с подуклонкой 1/20, что, при деревянных шпалах достигает­ся за счет клинчатых подкладок, а при железобетонных - соответст­вующим наклоном поверхности шпал в зоне опирания рельсов. Расстояние между внутренними гранями головок- рельсов называет­ся шириной колеи . Эта ширина складывается из расстояния между колесами (1440±3 мм), двух тол­щин гребней (от 25 до 33 мм) и зазоров между колесами и рель­сами, необходимых для свободного прохождения колесных пар. Шири­на нормальной (широкой) колеи в прямых и кривых участках пути с радиусом более 349 м принята в СССР 1520 мм с допусками в сторо­ну уширения 6 мм и в сторону сужения 4 мм. В соответствии с ПТЭ верх головок рельсов обеих нитей пути на прямых участках должен быть в одном уровне. Разрешается на прямых участках пути на всей протяженности каждого из них со­держать одну рельсовую нить на 6 мм выше другой.При сооружении пути стыки на обеих рельсовых нитях располагают точно один против другого по на­угольнику, что по сравнению с рас­положением стыков в разбежку уменьшает число ударов колесных пар о рельсы, а также позволяет заготавливать и менять рёльсошпальную решетку целыми звеньями с помощью путеукладчиков.Для того чтобы каждая колес­ная пара не могла поворачиваться вокруг вертикальной оси, колесные пары вагона или локомотива соединяют по две и более жесткой рамой. Расстояние, между крайними осями, соединенными рамой, называется жесткой базой, а между крайними осями, вагона или локомотива-полной колесной базой. Жёсткое соединение колесных пар обеспечивает устойчивое положение их на рельсах, но в то же время затрудняет прохождение в кривых малого радиуса, где возможно их заклинивание. Для облегчения вписывания в кривые современный под­вижной состав выпускают на отдель­ных тележках с небольшими жест­кими базами.

ОСОБЕННОСТИ УСТРОЙСТВА ПУТИ В КРИВЫХ. В кривых участках устройство пути имеет ряд особенностей, основными из которых являются: возвы­шение наружного рельса над внут­ренним, наличие переходных, кри­вых, уширение колеи при малых радиусах, укладка укороченных рель­сов на внутренней рельсовой нити, усиление, пути, увеличение расстоя­ния между осями путей на двух- и многопутных линиях. Возвышение наружного рельса предусматривается при радиусе кри­вой 4000 м. и менее для того, чтобы нагрузка на каждую рельсо­вую нить была примерно одинаковой с учетом действия центробежной силы.Устройство переходных кривых связано с необходимостью плавного сопряжения кривой с примыкающей прямой, как в плане, так и в профиле. Переходная кривая в плане представляет собой кривую перемен­ного радиуса, уменьшающегося от бесконечно большого до R - радиус круговой кривой с уменьше­нием кривизны пропорционально изменению длины.Уширение колеи производится для обеспечения вписывания подвижного состава в кривые. По­скольку колесные пары закреплены в раме тележки таким образом, что в пределах жесткой базы они всегда параллельны между собой, в кривой только одна колесная пара может расположиться по радиусу, а остальные будут находиться под углом. Это вызывает необходимость увеличения зазора между гребнями колес и рельсами во избежание заклинивания колесных пар.

Укладка укороченных рельсов во внутреннюю нить необходима для исключения разбежки стыков. Поскольку внутренняя рельсовая нить в кривой короче наружной, то укладка в нее рельсов той же длины, что и в наружную, вызовет забегание стыков вперед на внутрен­ней нити. Для устранения разбежки стыков при каждом радиусе кривой необходимо иметь свою величину укорочения рельса. В целях унифика­ции применяют стандартные укорочения рельсовых звеньев длиной 25 м на 80 и 160 мм. Укладку укороченных рельсов во внутренней нити чередуют с укладкой рельсов нормальной длины так, что бы забег стыков, не превышал половины укорочения, т.е. 40; 80 мм.Усиление пути в кривых произ­водится при R ≤ 1200 м для обеспечения необходимой равнопрочное я примыкающими прямыми. Для этого увеличивают число шпал на километр, уширяют балластную призму с наружной стороны кривой, ставят несимметричные подкладки с большим плечом в наружную сторону, отбирают наиболее твердые рельсы. В круговых кривых на двух- и много­путных линиях увеличивается расстояние между осями путей в соответствии с требованиями габарита, что достигается в пределах переходной кривой внутреннего пути за счет изменения ее параметра.

УСТРОЙСТВО ПУТИ НА МОСТАХ И В ТОННЕЛЯХ. Конструкция пути на мостах и в тоннелях имеет, ряд особенностей. На металлических мостах рельсовый путь обычно делают без балласта; на деревянных брусьях, уложенных на расстоянии 10-15 см друг от друга. Брусья крепят болтами к продольным балкам. Для удержания; подвижного состава в случае схода его с рельсов на существующих мостах снаружи колеи имеются деревянные охранные брусья, а внутри - контррельсы. На строя­щихся мостах для этой цели используют металлические охранные уголки специального профиля. На мостах с большими металличес­кими пролетными строениями укла­дывают путь на металлических попе­речинах. На ряде металлических мостов и, в частности, на мосту через р. Амур на БАМе применена конструкция пути на сплошных желе­зобетонных плитах, дающая сокращение затрат на содер­жание мостового полотна.На каменных, бетонных и желе­зобетонных мостах, а также на путе­проводах, расположенных в пределах станции, путь устраивают на щебе­ночном балласте и обычных шпа­лах, для чего на мосту устраи­вают корыто шириной поверху на однопутных линиях не менее 3,6 м, а на двухпутных - не менее 7,7 м. Толщину щебе­ночного балласта на мостах и путе­проводах принимают, как правило, не менее 25 см.На подходах к мостам независи­мо от рода балласта, принятогона данной линии, путь с обеих сторон укладывают на щебеночном балласте, что повышает устойчивость пути и уменьшает засорение пылью конструкций моста при движении поездов. На подходах к безбал­ластным мостам путь полностью за­креплен от угона; на самих мостах противоугоны ставят как исключе­ние. На больших металлических мо­стах во избежание разрыва стыков при температурных изменениях дли­ны пролетных строений устанавлива­ют специальные приборы, обеспечи­вающие взаимное смещение остряка и рамного рельса. Путь в тоннелях рекомендуется делать на железобетонных шпалах с эпюрой на одну ступень выше, чем на подходах. На протяжен­ности 200 м с каждой стороны перед тоннелем и в самом тоннеле путь должен быть, на щебеночном балласте толщиной не менее 25 см. Путь в тоннеле может быть и на жестком бетонном основании со скреплениями раздельного типа с прокладками-амортизаторами. На мостах и тоннелях не допускается применение разных типов рельсов, переходных стыков и рельсовых рубок.

mob_info