Особенности использования ректификационной колонны. Типы ректификационных колонн Для чего нужны тарелки в ректификационной колонне

Цель статьи – разобрать теоретические и некоторые практические аспекты работы домашней ректификационной колонны, нацеленной на получение этилового спирта, а также развеять самые распространенные в Интернете мифы и разъяснить моменты, о которых «умалчивают» продавцы оборудования.

Ректификация спирта – разделение многокомпонентной спиртосодержащей смеси на чистые фракции (этиловый и метиловый спирты, воду, сивушные масла, альдегиды и другие), имеющие разную температуру кипения, путем многократного испарения жидкости и конденсации пара на контактных устройствах (тарелках или насадках) в специальных противоточных башенных аппаратах.

С физической точки зрения ректификация возможна, поскольку изначально концентрация отдельных компонентов смеси в паровой и жидкой фазах отличается, но система стремится к равновесию – одинаковому давлению, температуре и концентрации всех веществ в каждой фазе. При контакте с жидкостью пар обогащается легколетучими (низкокипящими) компонентами, в свою очередь, жидкость – труднолетучими (высококипящими). Одновременно с обогащением происходит обмен теплом.

Принципиальная схема

Момент контакта (взаимодействия потоков) пара и жидкости называется процессом тепломассообмена.

Благодаря разной направленности движений (пар поднимается вверх, а жидкость стекает вниз), после достижения системой равновесия в верхней части ректификационной колонны можно по отдельности отобрать практически чистые компоненты, входившие в состав смеси. Сначала выходят вещества с более низкой температурой кипения (альдегиды, эфиры и спирты), потом – с высокой (сивушные масла).

Состояние равновесия. Появляется на самой границе разделения фаз. Достигается только при одновременном соблюдении двух условий:

  1. Равное давление каждого отдельно взятого компонента смеси.
  2. Температура и концентрация веществ в обеих фазах (паровой и жидкой) одинакова.

Чем чаще система приходит в равновесие, тем эффективнее тепломасообмен и разделение смеси на отдельные составляющие.

Разница между дистилляцией и ректификацией

Как видно на графике, из 10% спиртового раствора (браги) можно получить самогон 40%, а при второй перегонке этой смеси выйдет 60-градусный дистиллят, при третьей – 70%. Возможны следующие интервалы: 10-40; 40-60; 60-70; 70-75 и так далее до максимума – 96%.

Теоретически, чтобы получить чистый спирт, требуется 9-10 последовательных дистилляций на самогонном аппарате. На практике перегонять спиртосодержащие жидкости концентрацией выше 20-30% взрывоопасно, к тому же из-за больших затрат энергии и времени экономически невыгодно.

С этой точки зрения, ректификация спирта – это минимум 9-10 одновременных, ступенчатых дистилляций, которые происходят на разных контактных элементах колонны (насадках или тарелках) по всей высоте.

Отличие Дистилляция Ректификация
Органолептика напитка Сохраняет аромат и вкус исходного сырья. Получается чистый спирт без запаха и вкуса (проблема имеет решение).
Крепость на выходе Зависит от количества перегонок и конструкции аппарата (обычно 40-65%). До 96%.
Степень разделения на фракции Низкая, вещества даже с разной температурой кипения перемешиваются, исправить это невозможно. Высокая, можно выделить чистые вещества (только с разной температурой кипения).
Способность убрать вредные вещества Низкая или средняя. Для повышения качества требуется минимум две перегонки с разделением на фракции хотя бы при одной из них. Высокая, при правильном подходе отсекаются все вредные вещества.
Потери спирта Высокие. Даже при правильном подходе можно извлечь до 80% от всего количества, сохранив приемлемое качество. Низкие. Теоретически, реально извлечь весь этиловый спирт без потери качества. На практике минимум 1-3% потерь.
Сложность технологии для реализации в домашних условиях Низкая и средняя. Подходит даже самый примитивный аппарат со змеевиком. Возможны улучшения оборудования. Технология перегонки проста и понятна. Самогонный аппарат обычно не занимает много места в рабочем состоянии. Высокая. Требуется специальное оборудование, изготовить которое без знаний и опыта невозможно. Процесс сложнее для понимания, нужна предварительная хотя бы теоретическая подготовка. Колонна занимает больше места (особенно по высоте).
Опасность (в сравнении друг с другом), оба процесса пожаро- и взрывоопасны. Благодаря простоте самогонного аппарата дистилляция несколько безопаснее (субъективное мнение автора статьи). Из-за сложного оборудования, при работе с которым существует риск допустить больше ошибок, ректификация опаснее.

Работа ректификационной колонны

Ректификационная колонна – устройство, предназначенное для разделения многокомпонентной жидкой смеси на отдельные фракции по температуре кипения. Представляет собой цилиндр постоянного или переменного сечения, внутри которого находятся контактные элементы – тарелки или насадки.

Также почти каждая колонна имеет вспомогательные узлы для подвода исходной смеси (спирта-сырца), контроля процесса ректификации (термометры, автоматика) и отбора дистиллята – модуль, в котором конденсируется, а затем принимается наружу извлеченный из системы пар определенного вещества.

Одна из самых распространенных домашних конструкции

Спирт-сырец – продукт перегонки браги методом классической дистилляции, который можно «заливать» в ректификационную колонну. Фактически это самогон крепостью 35-45 градусов.

Флегма – сконденсировавшийся в дефлегматоре пар, стекающий по стенкам колонны вниз.

Флегмовое число – отношение количества флегмы к массе отбираемого дистиллята. В спиртовой ректификационной колонне находятся три потока: пар, флегма и дистиллят (конечная цель). В начале процесса дистиллят не отбирают, чтобы в колонне появилась достаточно флегмы для тепломассообмена. Потом часть паров спирта конденсируют и отбирают из колонны, а оставшиеся спиртовые пары и дальше создают поток флегмы, обеспечивая нормальную работу.

Для работы большинства установок флегмовое число должно быть не меньше 3, то есть 25% дистиллята отбирают, остальной – нужен в колонне для орошения контактных элементов. Общее правило: чем медленнее отбирать спирт, тем выше качество.

Контактные устройства ректификационной колонны (тарелки и насадки)

Отвечают за многократное и одновременное разделение смеси на жидкость и пар с последующей конденсацией пара в жидкость – достижение в колонне состояния равновесия. При прочих равных условиях, чем больше в конструкции контактных устройств, тем эффективнее ректификация в плане очистки спирта, поскольку увеличивается поверхность взаимодействия фаз, что интенсифицирует весь тепломасообмен.

Теоретическая тарелка – один цикл выхода из равновесного состояния с повторным его достижением. Для получения качественного спирта требуется минимум 25-30 теоретических тарелок.

Физическая тарелка – реально работающее устройство. Пар проходит сквозь слой жидкости в тарелке в виде множества пузырьков, создающих обширную поверхность контакта. В классической конструкции физическая тарелка обеспечивает примерно половину условий для достижения одного равновесного состояния. Следовательно, для нормальной работы ректификационной колонны требуется в два раза больше физических тарелок, чем теоретических (расчетных) минимум – 50-60 штук.

Насадки. Зачастую тарелки ставят только на промышленные установки. В лабораторных и домашних ректификационных колоннах в качестве контактных элементов используются насадки – скрученная специальным образом медная (либо стальная) проволока или сетки для мытья посуды. В этом случае флегма стекает тонкой струйкой по всей поверхности насадки, обеспечивая максимальную площадь контакта с паром.



Насадки из мочалок самые практичные

Конструкций очень много. Недостаток самодельных проволочных насадок – возможная порча материала (почернение, ржавчина), заводские аналоги лишены подобных проблем.

Свойства ректификационной колонны

Материал и размеры. Цилиндр колонны, насадки, куб и дистилляторы обязательно делают из пищевого, нержавеющего, безопасного при нагревании (равномерно расширяется) сплава. В самодельных конструкциях в качестве куба чаще всего используются бидоны и скороварки.

Минимальная длина трубы домашней ректификационной колонны – 120-150 см, диаметр – 30-40 мм.

Система нагрева. В процессе ректификации очень важно контролировать и быстро регулировать мощность нагрева. Поэтому самым удачным решением является нагрев с помощью ТЭНов, вмонтированных в нижнюю часть куба. Подвод тепла через газовую плиту не рекомендуется, поскольку не позволяет быстро менять температурный диапазон (высокая инертность системы).

Контроль процесса. Во время ректификации важно следовать инструкции производителя колонны, в которой обязательно указываются особенности эксплуатации, мощность нагрева, флегмовое число и производительность модели.



Термометр позволяет точно контролировать процесс отбора фракций

Очень сложно контролировать процесс ректификации без двух простейших приспособлений – термометра (помогает определить правильную степень нагрева) и спиртометра (измеряет крепость полученного спирта).

Производительность. Не зависит от размеров колонны, поскольку, чем выше царга (труба), тем больше физических тарелок находится внутри, следовательно, качественнее очистка. На производительность влияет мощность нагрева, которая определяет скорость движения потоков пара и флегмы. Но при переизбытке подаваемой мощности колонна захлебывается (перестает работать).

Средние значения производительности домашних ректификационных колон – 1 литр в час при мощности нагрева 1 кВт.

Влияние давления. Температура кипения жидкостей зависит от давления. Для успешной ректификации спирта давление вверху колонны должно быть приближено к атмосферному – 720-780 мм.рт.ст. В противном случае при уменьшении давления снизится плотность паров и увеличится скорость испарения, что может стать причиной захлебывания колонны. При слишком высоком давлении падает скорость испарения, делая работу устройства неэффективной (нет разделения смеси на фракции). Для поддержания правильного давления каждая колонна для ректификации спирта оборудована трубкой связи с атмосферой.

О возможности самодельной сборки. Теоретически, ректификационная колонна не является очень сложным устройством. Конструкции успешно реализуются умельцами в домашних условиях.

Но на практике без понимания физических основ процесса ректификации, правильных расчетов параметров оборудования, подбора материалов и качественной сборки узлов, использование самодельной ректификационной колоны превращается опасное занятие. Даже одна ошибка может привести к пожару, взрыву или ожогам.

В плане безопасности прошедшие испытания (имеют подтверждающую документацию) заводские колонны надежнее, к тому же поставляются с инструкцией (должна быть подробной). Риск возникновения критической ситуации сводится только к двум факторам – правильной сборке и эксплуатации согласно инструкции, но это проблема почти всех бытовых приборов, а не только колонн или самогонных аппаратов.

Принцип работы ректификационной колонны

Куб наполняют максимум на 2/3 объема. Перед включением установки обязательно проверяют герметичность соединений и сборки, перекрывают узел отбора дистиллята и подают охлаждающую воду. Только после этого можно начать нагрев куба.

Оптимальная крепость подаваемой в колонну спиртосодержащей смеси – 35-45%. То есть в любом случае перед ректификацией требуется дистилляция браги. Полученный продукт (спирт-сырец) потом перерабатывают на колонне, получая почти чистый спирт.

Это значит, что домашняя ректификационная колонна не является полной заменой классического самогонного аппарата (дистиллятора) и может рассматриваться лишь как дополнительная ступень очистки, более качественно заменяющая повторную дистилляцию (вторую перегонку), но нивелирующая органолептические свойства напитка.

Справедливости ради отмечу, что большинство современных моделей ректификационных колон предполагают работу в режиме самогонного аппарата. Для перехода к дистилляции нужно лишь перекрыть штуцер соединения с атмосферой и открыть узел отбора дистиллята.

Если одновременно перекрыть оба штуцера, то нагретая колонна может взорваться из-за избыточного давления! Не допускайте подобных ошибок!

На промышленных установках непрерывного действия зачастую брагу перегоняют сразу, но это возможно благодаря гигантским размерам и особенностям конструкции. Например, стандартом считается труба 80 метров высоты и 6 метров диаметра, в которой установлено в разы больше контактных элементов, чем на ректификационных колоннах для дома.



Размер имеет значение. Возможности спиртзаводов в плане очистки куба больше, чем при домашней ректификации

После включения жидкость в кубе доводится нагревателем до кипения. Образовавшийся пар поднимается вверх по колонне, затем попадает в дефлегматор, где конденсируется (появляется флегма) и по стенкам трубы возвращается в жидком виде в нижнюю часть колонны, на обратном пути контактируя с поднимающимся паром на тарелках или насадках. Под действием нагревателя флегма снова становится паром, а пар вверху опять конденсируется дефлегматором. Процесс становится циклическим, оба потока непрерывно контактируют друг с другом.

После стабилизации (пара и флегмы достаточно для равновесного состояния) в верхней части колонны скапливаются чистые (разделенные) фракции с самой низкой температурой кипения (метиловый спирт, уксусный альдегид, эфиры, этиловый спирт), внизу – с самой высокой (сивушные масла). По мере отбора нижние фракции постепенно поднимаются вверх по колонне.

В большинстве случаев стабильной (можно начинать отбор) считается колонна, в которой температура не меняется на протяжении 10 минут (общее время прогрева – 20-60 минут). До этого момента устройство работает «само на себя», создавая потоки пара и флегмы, которые стремятся к равновесию. После стабилизации начинается отбор головной фракции, содержащей вредные вещества: эфиры, альдегиды и метиловый спирт.

Ректификационная колонна не избавляет от необходимости разделять выход на фракции. Как и в случае с обычным самогонным аппаратом приходится собирать «голову», «тело» и «хвост». Разница только в чистоте выхода. При ректификации фракции не «смазываются» – вещества с близкой, но хотя бы на десятую долю градуса разной температурой кипения не пересекаются, поэтому при отборе «тела» получается почти чистый спирт. Во время обычной дистилляции разделить выход на фракции, состоящие только из одного вещества, невозможно физически какая бы конструкция не использовалась.

Если колонна выведена на оптимальный режим работы, то при отборе «тела» трудностей не возникает, так как температура всё время стабильна.

Нижние фракции («хвосты») при ректификации отбирают, ориентируясь по температуре или по запаху, но в отличие от дистилляции эти вещества не содержат спирта.

Возвращение спирту органолептических свойств. Зачастую «хвосты» требуются, чтобы вернуть спирту-ректификату «душу» – аромат и вкус исходного сырья, например, яблока или винограда. После завершения процесса в чистый спирт добавляют некоторое количество собранных хвостовых фракций. Концентрацию рассчитывают эмпирическим путем, экспериментируя на небольшом количестве продукта.

Преимущество ректификации в возможности добыть практически весь содержащийся в жидкости спирт без потери его качества. Это значит, что «головы» и «хвосты», полученные на самогонном аппарате, можно переработать на ректификационной колонне и получить безопасный для здоровья этиловый спирт.

Захлебывание ректификационной колонны

Каждая конструкция имеет предельную скорость движения пара, после которой течение флегмы в кубе сначала замедляется, а потом и вовсе прекращается. Жидкость накапливается в ректификационной части колонны и происходит «захлебывание» – прекращение тепломассообменного процесса. Внутри происходит резкий перепад давления, появляется посторонний шум или бульканье.

Причины захлебывания ректификационной колонны:

  • превышение допустимой мощности нагрева (встречается наиболее часто);
  • засорение нижней части устройства и переполнение куба;
  • очень низкое атмосферное давление (характерно для высокогорий);
  • напряжение в сети выше 220В – в результате мощность ТЭНов возрастает;
  • конструктивные ошибки и неисправности.

КЛАССИФИКАЦИЯ И ВИДЫ БАРБОТАЖНЫХ КОЛОНН (ТАРЕЛОК)

При количественном расчёте работы ректификационных колонн используется понятие теоретическая тарелка (гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости, то есть концентрации компонентов этих потоков связаны между собой коэффициентом распределения). Любой реальной ректификационной колонне можно поставить в соответствие колонну с определённым числом теоретических тарелок, входные и выходные потоки которой как по величине, так и по концентрациям совпадают с потоками реальной колонны. Исходя из этого, определяют КПД. колонны как отношение числа теоретических тарелок, соответствующих этой колонне, к числу действительно установленных тарелок. Для насадочных колонн можно определить величину ВЭТТ (высоту, эквивалентную теоретической тарелке) как отношение высоты слоя насадки к числу теоретических тарелок, которым он эквивалентен по своему разделительному действию.

Используют различные виды тарелок: ситчатые, колпачковые, провальные, клапанные, пластинчатые и др.

1. Ситчатые тарелки.

Применяют главным образом при ректификации спирта и жидкого воздуха. Допустимые нагрузки по жидкости и пару для них относительно невелики, и регулирование режима их работы затруднительно. Жидкость и пар проходят попеременно через каждое отверстие в зависимости от соотношения их напоров. Тарелки имеют малое сопротивление, высокий КПД, работают при значительных нагрузках и отличаются простотой конструкции. Массо - и теплообмен между паром и жидкостью в основном происходят на некотором расстоянии от дна тарелки в слое пены и брызг. Давление и скорость пара, проходящего через отверстия сетки, должны быть достаточны для преодоления давления слоя жидкости на тарелке и создания сопротивления ее отеканию через отверстия, ситчатые тарелки необходимо устанавливать строго горизонтально для обеспечения прохождения пара через все отверстия тарелки, а также во избежание стекания жидкости через них. обычно диаметр отверстий ситчатой тарелки принимают в пределах 0,8--8,0 мм.

Колонна с ситчатыми тарелками представляет собой вертикальный цилиндрический корпус с горизонтальными тарелками (Рисунок 3.), в которых равномерно по всей поверхности просверлено значительное число отверстий диаметром 1-5 мм. газ проходи сквозь отверстия тарелки и распределяется в жидкости в виде мелких струек и пузырьков. ситчатые тарелки отличаются простотой устройства, легкостью монтажа, осмотра и ремонт. гидравлическое сопротивление этих тарелок невелико. ситчатые тарелки устойчиво работают довольно широком интервале скоростей газа, причем в определенном нагрузок по газу и жидкость эти тарелки обладают высокой эффективностью. вместе с тем ситчатые тарелки чувствительны загрязнителям и осадкам, которые забивают отверстия тарелок.

Рисунок 3.

2. Колпачковые тарелки.

Колпачки имеют отверстия или зубчатые прорези, расчленяющие пар на мелкие струйки для увеличения поверхности соприкосновения его с жидкостью (Рисунок 4). Переливные трубки служат для подвода и отвода жидкости и регулирования уровня жидкости на тарелке. Основной областью массообмена и теплообмена между парами и жидкостью, как показали исследования, является слой пены и брызг над тарелкой, создающийся в результате барботажа пара. Высота этого слоя зависит от размеров колпачков, глубины их погружения, скорости пара, толщины слоя жидкости на тарелке, физических свойств жидкости и др. Следует отметить, что, кроме колпачковых тарелок, применяют также клапанные, желобчатые, S-образные, чешуйчатые, провальные и другие конструкции тарелок. Достоинством колпачковых тарелок является удовлетворительная работа в широком диапазоне нагрузок по жидкости и пару, а также небольшая стоимость эксплуатации.

При барботаже пара через жидкость различают три режима барботажа:

  • Ш Пузырьковый режим (пар пробулькивается в виде отдельных пузырьков, образующих цепочку около стенки колпачка);
  • Ш Струйный режим (отдельные пузырьки пара сливаются в непрерывную струйку);
  • Ш Факельный режим (отдельные пузырьки пара сливаются в общий поток, имеющий вид факела).

Менее чувствительны к загрязнениям, чем ситчатые, и отличаются более высоким интервалом устойчивой работы колонны с колпачковыми тарелками. Газ на тарелку поступает по патрубкам, разбиваясь затем прорезями колпачка на большое число отдельных струй. Далее газ проходит через слой жидкости, перетекающей по тарелки от одного сливного устройства к другому.

Пар, образовавшийся в испарителе колонны, поступает на первую тарелку и проходит через паровые патрубки колпачков. Колпачки погружены на некоторый уровень в жидкую фазу. В результате этого паровая фаза проходит через прорези колпачков и барботирует в виде пузырьков в жидкой фазе, обеспечивая тем самым поверхность контакта между паровой и жидкой фазами и протекание на этой поверхности тепло- массообменных процессов. Поскольку пар имеет более высокую температуру чем жидкость, то при взаимодействии с жидкой фазой пар охлаждается и из него частично конденсируется легколетучий компонент, который присоединяется к жидкой фазе. Таким образом, она обогащается труднолетучим, а в паре повышается содержание легколетучего компонента.

Рисунок 4.

3. Клапанные тарелки.

Занимают среднее положение между колпачковыми и ситчатыми. Клапанные тарелки показали высокую эффективность при значительных интервалах нагрузок благодаря возможности саморегулирования. В зависимости от нагрузки клапан перемещается вертикально, изменяя площадь живого сечения для прохода пара, причем максимальное сечение определяется высотой устройства, ограничивающего подъем (Рисунок 5). Площадь живого сечения отверстий для пара составляет 10-15% площади сечения колонны. Скорость пара достигает 1,2 м/с. Клапаны изготовляют в виде пластин круглого или прямоугольного сечения с верхним или нижним ограничителем подъема. Тарелки, собранные из S-образных элементов, обеспечивают движение пара и жидкости в одном направлении, способствуя выравниванию концентрации жидкости на тарелке. Площадь живого сечения тарелки составляет 12-20% от площади сечения колонны. Коробчатое поперечное сечение элемента создает значительную жесткость, позволяющую устанавливать его на опорное кольцо без промежуточных опор в колоннах диаметром до 4,5 м.

Принцип действия клапанных тарелок состоят в том, что свободно лежащий что свободно лежащий над отверстием в тарелке круглый клапан с изменением расхода газа своим весом автоматически регулирует величину площади зазора между клапаном и плоскостью тарелки для прохода газа и тем самым поддерживает постоянной скорость газа при его истечении в барботажный слой.

Рисунок 5. а, б - с круглыми колпачками; в, с пластинчатым клапаном; г - балластная; 1 - клапан; 2 - кронштейн- ограничитель; 3 - балласт.

При этом с увеличением скорости газа в колонне гидравлическое сопротивление клапанной тарелки увеличивается незначительно. Высота подъема клапана ограничивается высотой кронштейна ограничителя и обычно не превышает 8 мм.

Достоинства клапанных тарелок : сравнительно высокая пропускная способность по газу и гидродинамическая устойчивость, постоянная высокая эффективность в широком интервале нагрузок по газу.

4. Каскадные тарелки Вентури

Собирают из отдельных листов, выгнутых так, чтобы направление потока пара было горизонтальным. Каналы для прохода пара имеют профиль сечения трубы Вентури, что способствует максимальному использованию энергии пара и снижению гидравлического сопротивления. Потоки пара и жидкости направлены в одну сторону, что обеспечивает хорошее перемешивание и контакт фаз. По сравнению с колпачковыми тарелками скорость пара может быть увеличена более чем вдвое. Конструкция гибкая, не допускает провала жидкости и снижения за счет этого эффективности. Небольшая удерживающая способность (30-40% по сравнению с колпачковой тарелкой) является ценным качеством при переработке чувствительных к нагреву жидкостей. Расстояние между тарелками выбирается в пределах 450-900 мм. Каскадные тарелки успешно применяются в установках, где необходимо обеспечить высокие скорости пара и жидкости.

5. Решетчатые тарелки

Изготавливают из штампованных листов с прямоугольными прорезами или набираются из полос. Необходимость опорной конструкции определяется толщиной металла и диаметром колонны. Расстояние между тарелками обычно 300-450 мм. Лучшая работоспособность, по сравнению с колпачковыми тарелками, при максимальных нагрузках.

6. Волнистые тарелки

Изготовляются штамповкой из перфорированных листов толщиной 2,5-3 мм в виде синусоидных волн. Жесткость конструкции позволяет использовать тонкий металл. Направление волн на соседних тарелках перпендикулярное. Глубина волн выбирается в зависимости от перерабатываемой жидкости. За счет большой турбулизации жидкости эффективность волнистой тарелки выше. А опасность засорения меньше, чем для плоской тарелки. Размеры волн увеличиваются с увеличением расчетной нагрузки по жидкости. Отношение высоты волны к ее длине выбирается в пределах от 0,2-0,4. Тарелки в колонне располагаются на расстоянии 400-600 мм друг от друга.

НАСАДОЧНЫЕ КОЛОННЫ

Насадочные колонны получили широкое распространение в промышленности. Они представляют собой цилиндрические аппараты, заполненные инертными материалами в виде кусков определенного размера или насадочными телами, имеющими форму, например, колец, шаров для увеличения поверхности фазового контакта и интенсификации перемешивания жидкой и паровой фаз (Рисунок 6).

Нерегулярная насадка. Нерегулярную насадку применяют в процессах массообмена, протекающих под давлением или в условиях неглубокого вакуума. Эта насадка обладает рядом преимуществ, одно из которых состоит в практическом отсутствии проблемы выбора материала. Насадку можно изготовить из металлов, полимеров, керамики.

Кусковая насадка. В качестве кусковой насадки применяют дробленные горные породы (кварц, андезит, кокс). Размеры кусковой насадки - 25-100 мм при беспорядочной засыпке. Достоинством насадки являются: дешевизна, химическая стойкость. Недостатком: малая удельная поверхность, малый свободный объем.

Кольцевая насадка . Наиболее распространенный тип кольцевой насадки - кольца Рашига. Изготавливаются из керамики, фарфора, пластмассы, металлов, углеграфитовых масс. Диаметр колец 25-150 мм. Кольца диаметром до 50 мм загружаются навалом. При больших диаметрах кольца укладываются рядами.

Существуют и другие кольцевые насадки: кольца с простой и крестообразной перегородкой, с прободенными стенками и т. д.

Насадка Рашига имеет небольшую стоимость, но малоэффективна. Для повышения эффективности массообмена кольцевую насадку изготовляют перфорированной и с внутренними перегородками - кольца Палля и их модификации. К кольцевой насадке с перфорированной цилиндрической частью и внутренними перегородками относится насадка «Каскад-мини-ринг».

Седлообразная насадка. Имеет большую удельную поверхность (на 25 % больше, чем кольцевая) и большой свободный объем. Такую насадку выпускают, главным образом, в виде седел «Инталокс» и седел Берля из керамики и пластмассы размером 37Ч37 мм и 50Ч50 мм. Особое место среди седловидных насадок занимает насадка «Инталокс метал», обладающая высокой эффективностью.

Регулярная насадка. Правильно уложенная насадка отличается от нерегулярной меньшим гидравлическим сопротивлением и поэтому особенно пригодна для процессов вакуумной ректификации. К недостаткам следует отнести их высокую чувствительность к равномерности орошения.

Простейшая регулярная насадка - плоскопараллельная - представляет собой пакеты, набираемые из плоских вертикальных, обычно металлических пластин толщиной 0,4-1,2 мм, расположенных параллельно с одинаковым зазором 10-20 мм. Высота пакета пластин 400-1000 мм. Наружный диаметр пакета соответствует внутреннему диаметру колонны. Для повышения равномерности распределения жидкости в колонне, пакеты устанавливают один над другим, взаимно повернутыми на угол 45-900. Недостатки этой насадки: высокая металлоемкость, плохое перераспределение жидкости, сравнительно низкая эффективность.


Рисунок 6.

СХЕМЫ РЕКТИФИКАЦИОННЫХ УСТАНОВОК

Ректификационная колонна периодического (ступенчатого) действия, представлена на Рисунке 7.

Рисунок 7. 1.Куб; 2 Ректификационная колонна; 3Дефлегматор; 4 Холодильник; 5 Сортировочный фонарь.

Куб выполняет одновременно две функции: служит емкостью для спирта подвергающегося ректификации и преобразователем спиртового пара.

Ректификационная колонна непрерывного действия, представлена на рисунке

2. Ректификационная колонна непрерывного действия, представлена на Рисунке 8.


Рисунок 8.1 Верхняя часть колонны; 2 Нижняя часть колонны; 3 Куб; 4 Дефлегматор; 5 Охладитель флегмы; 6 Холодильник; 8 Выход готового продукта.

Также ректификационные колонны делятся на полные и неполные.

Неполные колонны делятся на два вида:

  • · Бражные (отгонные) колонны действуют по следующему принципу: на верхнюю тарелку подается питание в виде пара, а из куба выходит практически чистая вода. Из верхней части отводится пар обогащенный спиртом. Дефлегматор в такой колонне не устанавливается, поэтому паровая фаза конденсируется в холодильнике.
  • · В спиртовых (концентрационных) колоннах пар подается в куб (под нижнюю тарелку). Из верхней части отводится спирт, а из нижней остаток обогащенный водой. Дефлегматор, установленный в таких колоннах выполняет функцию питания жидкостью.

Спиртовые (концентрационные) колонны не предусмотрены для получения чистой воды, а в бражной (отгонной) колонне невозможно получение чистого спирта.

Полная колонна является собирательным вариантом бражной и спиртовой. Данный вид состоит из нижней (исчерпывающей) и верхней (концентрационной) частей. Питание на верхнюю отгонную часть поступает через среднюю. В полных колоннах возможно получить оба компонента разделяемой смеси, но это допустимо только в том случае если эта смесь состоит из двух частей. Для того чтобы разделить брагу (многокомпонентную смесь) меняют несколько колонн, установленных последовательно. Каждая колонна разделяет смесь на дистиллят, представляющий собой один или несколько компонентов и остаток (труднолетучую смесь).

ПОЛНАЯ КОЛОННА

Рисунок 9. Принципиальные схемы ректификационных колонн: а - полная; б - неполная отгонная; в - неполная концентрационная

В полной ректификационной колонне 1 создается возможность для получения практически в чистом виде обоих компонентов разделяемой бинарной (двухкомпонентной) смеси. В неполной отгонной колонне из нижней части отводится практически чистый труднолетучий компонент, а из верхней - пар, несколько обогащенный легколетучим компонентом. Из верхней части неполной концентрационной колонны отводится практически чистый легколетучий компонент, а из нижней - остаток S, несколько обогащенный труднолетучим компонентом.

БРАГОПЕРЕГОННЫЕ УСТАНОВКИ


Рисунок 10.

В спиртовой промышленности применяются брагоперегонные установки двух типов - одноколонные и двухколонные. В одноколонной установке бражка, предварительно подогретая в дефлегматоре 4, поступает на верхнюю тарелку колонны 1. Нижняя часть колонны называется бражной, куда снизу подводится греющий пар. Из бражной колонны водно-спиртовые пары направляются в нижнюю часть спиртовой колонны 2; здесь пары укрепляются. Из колонны 2 укрепленные пары поступают в межтрубное пространство дефлегматора 4.

Конденсируясь, пары отдают теплоту бражке, протекающей в трубах дефлегматора. Конденсат водно-спиртовых паров возвращается в колонну 2 в виде флегмы. Не сконденсировавшиеся пары направляются в холодильник 5, где они конденсируются и образуют спирт-сырец. Спирт-сырец содержит не только воду и спирт, но и другие летучие продукты, входящие в состав бражки. Брагоректификационные установки бывают прямого, полупрямого и косвенного действия.

1. ПРЯМОГО ДЕЙСТВИЯ


Рисунок 11.

Установка состоит из эпюрационной колонны 3 с концентрационной частью 4 и ректификационной колонны 9, в состав которых входят дефлегматоры 5 и 7, а также конденсаторы 6 и 8. Бражка поступает в бражную колонну 1. Здесь из бражки выделяются этиловый спирт, хвостовые примеси и остатки головных и промежуточных примесей. Основную массу паров из бражной колонны 1 направляют в ректификационную колонну 9. Некоторая часть паров из бражной колонны 1 поступает в эпюрационную колонну 3 для ее обогревания. Для этой цели служит труба 2, снабженная дроссельным клапаном. Количество пара, поступающего в эпюрационную колонну, регулируется дроссельным клапаном. Хвостовые и промежуточные продукты, а также остатки головных продуктов отбирают в ректификационной колонне. Ректификат отводят в жидком виде с одной из верхних тарелок ректификационной колонны.

2. ПОЛУПРЯМОГО ДЕЙСТВИЯ


Рисунок 12.

В установке полупрямого действия бражка, не подвергаясь предварительной эпюрации, поступает непосредственно в бражную колонну 1. В этой колонне выделяются спирт и все примеси. Пары направляются через ловушку-сепаратор 3 в эпюрационную колонну 2 с концентрационной частью 4, дефлегматором 5 и конденсатором 6, где из них выделяются головные примеси.

Очищенный от головных примесей спирт, содержащий хвостовые и промежуточные примеси (эпюрат), в жидком виде поступает в ректификационную колонну 9, снабженную дефлегматором 8 и конденсатором 7. Отбор спирта-ректификата, сивушного масла и промежуточных продуктов производится так же, как и в аппаратах прямого действия.

3. КОСВЕННОГО ДЕЙСТВИЯ


Рисунок 13.

Водно-спиртовые пары, поднимающиеся из бражной колонны 7, полностью сгущаются в дефлегматоре 2 и конденсаторе 3, после чего в жидком виде поступают на эпюрацию в эпюрационную колонну 4 с дефлегматором 5 и конденсатором 6.

Эпюрат направляется в ректификационную колонну 9, снабженную дефлегматором 8 и конденсатором 7, где выделяются промежуточные продукты, сивушное масло и спирт-ректификат. Данная установка принята как типовая из-за высоких эксплуатационных показателей.

ПРАКТИЧЕСКАЯ ЧАСТЬ.

Для разделения простых бинарных смесей обычно используется одна простая колонна с небольшим числом тарелок устройств (обычно не более десяти), для разделения многокомпонентных и непрерывных смесей (нефть, широкие бензиновые фракции) требуется система колонн, каждая из которых разделяет поступающую в нее смесь на соответствующие компоненты (фракции). Число тарелок в каждой из таких колонн может достигать нескольких десятков.

Основными рабочими параметрами процесса ректификации являются давление и температура в системе, соотношение потоков жидкости и пара (флегмовое число), число контактных ступеней.

В качестве контактных элементов в больших ректификационных колоннах обычно используются тарелки. Каждая такая тарелка, расположенная в колонне, называется физической тарелкой. Назначение такой тарелки, как и любого другого контактного устройства, - обеспечить наиболее тесное соприкосновение жидкой и паровой фаз для максимального достижения состояния равновесия между ними. Тарелки работают следующим образом. Пар в виде пузырьков с развитой поверхностью проходит через слой флегмы, находящейся на тарелке. В результате такого «пробулькивания», тепломассообмен между жидкой и паровой фазами интенсифицируется. Конструкции тарелок разнообразны, часть из них стандартизирована. Выбор типа тарелки определяется видом смеси, производительностью колонны, требованиями по степени ректификации, качеству разделяемых компонентов (фракций) и т. п. Тарельчатые колонны используются, как правило, в крупнотоннажных производствах.

§ 1.2 Тарельчатые колонны. Требования и типы конструкций тарелок

Тарельчатыми называют колонные аппараты, у которых внутренними устройствами в рабочей зоне являются тарелки.

Тарелки – это барботажное устройство, в котором при работе происходит массообменный процесс, т.е. переход компонента из одной фазы в другую в результате непосредственного контакта между рабочими средами.

В химической и нефтеперерабатывающей промышленности применяют тарельчатые колонны различных размеров: от небольших диаметром 300 ÷ 400 мм до крупнотоннажных высокопроизводительных установок с колоннами диаметром 5 ÷ 12 м. Высота колонны зависит от числа тарелок и расстояния между ними. Обычно расстояния между тарелками принимают 250 ÷ 300 мм. По соображениям конструктивного порядка и возможности ремонта и очистки тарелок в колоннах большого диаметра расстояние между ними увеличивают до 500 ÷ 600 мм.

Общий вид тарельчатой ректификационной колонны представлен на рисунке. Она состоит из корпуса 3, переливных патрубков 1 , коль­цевой опоры 4, опорных колец 6, тарелок 2 и выносного кипятильника 5 и имеет ряд штуцеров для подачи продуктов и установки приборов.

Из-за разнообразия массообменных процессов применяют тарелки различных типов: колпачковые, ситчатые, клапанные, струйно-направленные, с S-образными элементами.

К тарелкам предъявляют следующие основные требования:

Они должны иметь высокий К.П.Д., т.е. обеспечивать хороший контакт между жидкостью и паром;

Они должны обладать малым гидравлическим сопротивлением;

Они должны устойчиво работать при значительном колебании расходов пара и жидкости;

Они должны быть просты по конструкции;

Они должны быть удобны в эксплуатации;

Они должны быть нечувствительны к различным осадкам и отложениям.

Конструкции тарелок.

Колпачковые тарелки сложны и металлоемки по сравнению с тарелками других типов.

Основной частью колпачковой тарелки (см. рисунок) является основа­ние 2 – стальной отбортованный диск толщиной 4 мм с отверстиями для установки паровых патрубков 3 и сегментной сливной трубы 1. Над паровыми патрубками установлены стандартные колпачки 4. Для создания необходимого уровня жидкости тарелка снабжена сливной перегородкой 10, к которой винтами прикреплена регулировочная планка 9. Перегородка 5 образует так называемый входной карман, в который погружается сливная труба выше расположенной тарелки. Нижняя тарелка установлена на кольце 15, приваренном к царге. Точность горизонтальной установки обеспечивается регулировочными винтами 14.

Для установки располагаемой выше тарелки служат стоики 1 , имеющие опорные плитки 8. Таким образом заполняют всю царгу.

Зазор между бортом основания тарелки и царгой уплотняют установкой сальниковой набивки 13 и зажатием ее прижимным кольцом 6 с помощью шпилек 11 и скоб 12.

Жидкость через сегментную сливную трубу заполняет тарелку на уровень, определяемый положением регулировочной планки 9 . Колпачки своими прорезями погружены в жидкость. Пар проходит снизу через паровые патрубки, щели колпачков и барботирует сквозь слой жидкости; при этом проис­ходит массообмен. Жидкость переливается на ниже расположенную тарелку, а пар идет вверх.

Колпачки (см. рисунок) для тарелок изготавливают двух исполнений (I – нерегулируемые по высоте и II – регулируемые по высоте).

Колпачки 1 прикреплены к паровым патрубкам 2 специаль­ными болтами 5 , шайбами 3 и гайками 4. По краю колпачок имеет прорези шириной 4 мм и высотой 15; 20 или 30 мм.

Колпачки располагают на тарелке по вершинам равносторонних треугольников или в шахматном порядке. Расстояние между краями колпачков 40 ÷ 60 мм.

Ситчатая тарелка – это лист с пробитыми в ней круглыми (рисунок а ), щелевидными (рисунок б ) или просеченными треугольными (рисунок в ) отверстиями размером 2 ÷ 15 мм. Пар, проходящий в отверстия, барботирует через слой жидкости, которая стекает через переливные патрубки. Скорость пара в отверстиях 10 ÷ 12 м/с.

Ситчатые тарелки просты в конструкции и эффективны. Их недостаток – необходимость точного регулирования заданного режима (особенно по расходу газа) и чувствительность к осадкам и отложениям, забивающим отверстия.

Ситчатые тарелки применяют в основном для колонн малого размера, т.к. при диаметрах более 2,5 м распределения жидкости на тарелке становится неравномерным.

Волнистая ситчатая тарелка

Клапанные тарелки. Основные элементы клапанной тарелки – подъемные клапаны (см. рисунок) круглой и прямоугольной формы, закрывающие отверстия в тарелке. Конструктивно клапан выполнен так, что подъем возможен только на определенную величину. При определенной скорости паров в отверстии клапаны уравновешиваются потоками пара и при дальнейшем увеличении нагрузки начинают подниматься таким образом, что скорость пара в сечении между клапаном и полотном тарелки остается примерно постоянной. Следствием этого является равномерное распределение пара по площади тарелки, уменьшение уноса жидкости и меньшее гидравлическое сопротивление.

Клапаны изготавливают штамповкой из листового металла толщиной 2 ÷ 3 мм. Диаметр дисковых клапанов 50 ÷ 100 мм, полная высота подъема 8 ÷ 15 мм. В крайнем нижнем положении между клапаном и плоскостью тарелки имеется зазор 1 ÷ 1,5 мм.

Тарелки струйно-направленные. Применяют для колонных аппаратов диаметром 1000 … 3600 мм. На штампованных секциях просечены и отогнуты под углом 30 или 40° полукруглые “язычки” (радиусом 20; 25 или 30 мм). Расстояние между соседними рядами язычков 50 мм. При поступлении снизу пара (газа) создается его струйно-направленное движение через слой находящейся на тарелке жидкости и происходит интенсивный барботаж.

Тарелка с S-образными элементами (см. рисунок). Их основное преимущество – простота конструкции и большая жесткость штампо­ванных элементов. S-образные элементы представляют собой кол­пачки с односторонним выходом пара. Пар из них выходит в том же направлении, что и движущаяся по тарелке жидкость.

Ректификационная колонна (колонна фракционирования) - цилиндрический вертикальный аппарат, оснащенный внутренними тепло- и массообменными устройствами и вспомогательными узлами, предназначенный для разделения двухкомпонентных или многокомпонентных жидких смесей на фракции, каждая из которых содержит вещества с близкой температурой кипения.

Ректификационные колонны подразделяются:

    по количеству получаемых продуктов:

Простые ректификационные колонны обеспечивают разделение исходной смеси (сырья) на два продукта: ректификат (дистиллят), выводимый с верха колонны в парообразном состоянии, и остаток (нижний жидкий продукт ректификации)

Сложные ректификационные колонны разделяют сырье более чем на два продукта. Различают сложные колонны с отбором дополнительных фракций из колонны в виде боковых погонов и колонны, у которых дополнительные продукты отбирают из специальных отпарных колонн (стриппинги ).

    по назначению:

1) для атмосферной и вакуумной перегонки нефти и мазута

2) для вторичной перегонки бензина

3) для стабилизации нефти, газоконденсатов, нестабильных бензинов

4) для фракционирования нефтезаводских, нефтей и природных газов

5) для отгонки растворителей в процессах очистки масел

6) для разделения продуктов трубчатой печи и каталитических процессов переработки нефтяного сырья и газов и т. д.

    по величине давления:

это колонны, в верхней части которых давление несколько выше атмосферного (0,1…0,2 МПа). Давление в нижней части колонны, как правило, зависит от сопротивления ее внутренних устройств и может значительно превышать атмосферное. Применяются такие колонны при перегонке стабилизированной или отбензиненной нефти на топливные фракции и мазут.

работают под вакуумом (или глубоким вакуумом). Иными словами, давление в них ниже атмосферного (создается разрежение), что позволяет снизить рабочую температуру процесса и избежать разложения продукта. Такие колонны предназначаются для фракционирования мазута на вакуумный (глубоковакуумный) газойль или узкие масляные фракции и гудрон.

применяются при стабилизации или отбензинивании нефти, стабилизации газовых бензинов, бензинов перегонки нефти и вторичных процессов и фракционировании нефтезаводских или попутных нефтяных газов.

    по принципу действия:

применяются на установках малой производительности при необходимости отбора большого числа фракций и высокой четкости разделения. Исходное сырьё заливают в куб на высоту, равную 2/3 его диаметра. Подогрев ведут глухим паром. В первый период работы ректификационной установки отбирают наиболее летучий компонент смеси, например бензольную головку, затем компоненты с более высокой температурой кипения (бензол, толуол и т. д.). Наиболее высококипящие компоненты смеси остаются в кубе, образуя кубовый остаток. По окончании процесса ректификации этот остаток охлаждают и откачивают. Куб вновь заполняют сырьём и ректификацию возобновляют. Периодичностью процесса обусловлены больший расход тепла, меньшая производительность труда и менее эффективное использование оборудования.

Установки с колоннами непрерывного действия лишены недостатков колонн периодического действия. В таких колоннах нагретое сырьё вводится в ректификационную колонну, где разделяется на жидкую и паровую фазы. В результате ректификации сверху колонны отбирается изопентан как головной продукт и снизу колонны – н-пентан как остаток.

    по способу межступенчатой передачи жидкости:

1) с переточными устройствами (с одним, двумя или более)

2) без переточных устройств (провального типа)

    по способу организации контакта парогазовой и жидкой фаз:

Эти колонны применяют, например, для выделения тяжёлой воды. Тарелки представляют собой конические щитки с углом наклона 40°. Неподвижные тарелки 4 по периферии прикреплены к корпусу колонны 1, подвижные 3 прикреплены в центре к валу 5 и вместе с ним вращаются. Вращающиеся тарелки чередуются с неподвижными. Через каждые 1,5 м по высоте вал охватывается шариковыми подшипниками 6, работающими без смазки. Для удобства монтажа колонна собрана из царг (частей / на фланцах). Флегма спускается сверху по неподвижной тарелке 4 и у центра переливается на нижележащую вращающуюся тарелку 3. Под влиянием центробежной силы флегма перемещается по вращающейся тарелке вверх до её периферии и в виде сплошной кольцевой пленки переливается на неподвижную тарелку. Пары движутся над флегмой противотоком.

В насадочных колоннах контакт между газом (паром) и жидкостью осуществляется на поверхности специальных насадочных тел, а также в свободном пространстве между ними.

Насадка – тело из инертных материалов, она создана для создания большей поверхности контакта меж стекающей по ней жидкостью и поднимающимся потоком паров и интенсивного их перемешивания. Насадка выполняется обычно из коррозионно-стойкого материала (керамика, фарфор, стекло).

Насадку укладывают на тарелки, снабженные двумя отверстиями двух видов: малыми – для стока орошения (флегмы) и большими – для прохода паров. Слой насадки разбивают на несколько маленьких слоев высотой 1-1,5 м, разделяя их свободным пространством.

Чем мельче насадочные кольца, тем лучше контакт между парами и флегмой, но тем выше гидравлическое сопротивление движению паров в колонне. При некотором предельном значении нагрузки насадочной колонны, т. е. при высокой скорости паров или жидкости, может наблюдаться «захлёбывание» насадки , когда прекращается стекание жидкости и начинается её выброс из колонны. Основной недостаток насадочных колонн – образование «мёртвых» зон в насадке, через которые не проходят ни пары, ни флегма, что ухудшает контакт между массообменивающими фазами и понижает эффективность разделения.

Конструкции насадок, применяемых в промышленных аппаратах нефтегазопереработки и нефтехимии, можно разделить на две группы - нерегулярные (насыпные) и регулярные насадки.

В качестве нерегулярных (насыпных) насадок используют твердые тела различной формы, загруженные в корпус в навал. В результате в колонне образуется сложная пространственная структура, обеспечивающая значительную поверхность контакта фаз.

Среди насадок, засыпаемых в навал, широкое распространение получили кольца Рашига, представляющие собой отрезки труб, высота которых равна наружному диаметру. Низкая стоимость и простота изготовления колец Рашига делают их одним из самых распространенных типов насадок. Наряду с гладкими цилиндрическими кольцами из металла, керамики или фарфора разработаны насадки с ребристой наружной и (или) внутренней поверхностями. Для интенсификации процесса массообмена разработаны конструкции цилиндрических насадок с перегородками.


Насадка из колец Рашига (1 - отдельное кольцо; 2 - кольца навалом; 3 - регулярная насадка)

Промышленное использование в настоящее время нашла еще одна кольцевая насадка - кольца Палля. При изготовлении таких колец на боковых стенках сделаны два ряда прямоугольных, смещенных относительно друг друга надрезов, лепестки которых отогнуты внутрь насадки. Конструкция колец Палля по сравнению с кольцами Рашига позволяет увеличить пропускную способность и снизить гидравлическое сопротивление.

Насадка, известная как седла Инталлокс, является сегодня наиболее распространенной керамической насадкой. Поверхность ее представляет собой часть тора. Седла Инталлокс обладают механической прочностью, обеспечивают однородность размещения насадки и хорошее самораспределение жидкости.

В тарельчатых колоннах контакт между фазами происходит при прохождении пара (газа) сквозь слой жидкости, находящейся на контактном устройстве (тарелке).

Тарелка ректификационной колонны представляет собой горизонтальную перегородку в колонне, на тарелке находится слой стекающей по колонне жидкости (орошение), сквозь которую барботируют поднимающиеся снизу пары.

В книге Скобло А.И., Молоканов Ю.К., Владимиров А.И., Щелкунов В.А. «Процессы и аппараты нефтегазопереработки и нефтехимии» колонные аппараты по типу внутренних контактных устройств подразделяются на тарельчатые, насадочные и пленочные (к пленочным авторы данного издания относят аппараты, в которых фазы контактируют на поверхности тонкой пленки жидкости, стекающей по вертикальной или наклонной поверхности).

Ректификация позволяет получить спирт высокой крепости и чистоты. Оба качества зависят от того, насколько хорошо человек, управляющий процессом, понимает его суть. Поэтому знать теорию ректификации надо каждому, кто хочет делать чистые и крепкие спиртные напитки на самогонном аппарате .

История ректификации

Начнем с процесса дистилляции, ведь именно он является предшественником ректификации. Нет точной информации о том, кто первый изобрел дистилляцию. В. Шнайдер, составитель словаря алхимических и фармацевтических терминов, считает, что данная заслуга принадлежит в первую очередь персам, которые использовали дистилляцию, чтобы получить розовую воду (эфир розы). Можно сделать вывод, что история дистилляции насчитывает более 3500 лет. Первоначально дистилляцией называли все процессы разделения смесей на компоненты. По мере их изучения процессы классифицировали и дали им наименование. Таким образом, в сейчас дистилляцией называют разделение веществ, основанное на испарении жидкости и последующей конденсации паров.


Аламбики были первыми аппаратами для дистилляции и конструкционно практически не изменились за несколько тысяч лет. Первоначально использовались, чтобы получать ароматные масла.

Наука не стояла на месте, процесс дистилляции тщательно изучался и совершенствовался. С начала XVI века наблюдалось большое количество работ по подбору испарительных кубов и системы обогрева аппаратов. Для обеспечения непрерывной работы колонны использовались водяные и песочные бани, применялись восковые свечи. Только к 1415 году впервые было предложено применять теплоизоляцию, а именно шерсть животных. В конце XVI века было выявлено преимущество водяного охлаждения конденсатора, до этого времени охлаждение было воздушным.

В период XVI по XIX век стремительно происходила модернизация аппаратурного оснащения. Исходя из инертности материалов по отношению к возгоняемым жидкостям, в перегонных кубах в качестве оптимальных использовались стекло и керамика, в дальнейшем нержавеющая сталь. В 1709 году впервые появились теории о дефлегмации (возвращении части сконденсировавшихся паров в колонну).

Результатом всех исследований и разработок стало изобретение первой ректификационной колонны непрерывного действия французскими инженерами Адамом, Бераром и Перье, получившие на нее патент в 1813 году. Она до сих пор соответствует современным ректификационным колоннам. С этого периода начинается история ректификации в науке и промышленности.

Понятие ректификации

Существуют различные определения ректификации.

Ректификация - это процесс разделения бинарных (двухкомпонентные смеси, например, спирт-вода) или многокомпонентных смесей за счет противоточного массо- и теплообмена между паром и жидкостью. Ректификация - разделение жидких смесей на практически чистые компоненты, отличающиеся по температуре кипения, путём многократных испарений жидкости и конденсации паров.

Несмотря на столь сложные формулировки, в процессе ректификации нет ничего трудного. Имея необходимое оборудование и базовые знания, ее с легкостью можно провести у себя на кухне.

Процесс ректификации

Э. Крель в своих трудах «Руководство по лабораторной перегонке» изложил основной принцип ректификации:

Обмен веществ (массообмен и теплообмен) происходит путем прохождения паровой смеси через наполнитель колонны.

На скорость и качество этого процесса влияют следующие факторы:

  1. Коэффициент диффузии (прохождение паровой смеси через наполнитель колонны);
  2. Концентрация возгоняемого вещества;
  3. Площадь поверхности контакта в колонне;
  4. Разность температур кипения разделяемых компонентов.

Можно сделать вывод, что процесс ректификации спирта будет лучше протекать при следующих условиях: хорошей диффузии, высокой концентрации отделяемого компонента, развитой площади контакта.

Особое внимание Крель уделил важности состояния межфазной поверхности и перечислил факторы, определяющие процесс ректификации:

  1. Свойства разделяемой смеси: летучесть компонентов, состав смеси, взаимная растворимость компонентов.
  2. Характеристика насадки: форма насадочного тела, способ укладки насадки, плотность заполнения колонны.
  3. Косвенные факторы: способ подачи жидкости в колонну, интенсивность и метод обогрева, рабочее давление.

Виды ректификационных колонн

В зависимости от применяемых контактных устройств, колонны делятся на тарельчатые и насадочные.

Тарельчатые ректификационные колонны

В основном распространены в нефтеперерабатывающей отрасли и на крупных производствах. Тарельчатые колонны представляют собой вертикальную трубу, в которой через определенное расстояние устанавливаются тарелки разной конфигурации, где идет контакт между паровой и жидкой фазами.

Недостаток колонн : дороговизна и большие габариты.

Преимущества : тарельчатая ректификационная колонна тоньше разделяет фракции.


Насадочные ректификационные колонны

На сегодняшний день широкое распространение получили насадочные колонны. Это те же вертикальные трубы, только в них устанавливается другое контактное устройство - насадка.

Насадки разделяются на два типа:

Нерегулярная - неупорядоченный слой насыпного или заполняемого инертного материала (например, спирально призматическая насадка СПН).

Преимущества : малый вес, большая площадь контакта.

Недостатки : высокое сопротивление, сложность правильного распределения паров и флегмы.


Регулярная - представляет собой скомпонованные в кассеты перфорированные сетки и листы (к ним относится регулярная проволочная насадка Панченкова (РПН).

Преимущества : высокая эффективность, малый перепад давления.

Недостатки : насадочная ректификационная колонна явных недостатков не показала.

Процессы в ректификационной колонне

Рассмотрим, что происходит в самой колонне на примере оборудования Фабрики «Доктор Губер». Здесь нет никакой магии или секретных технологий, все очень просто.

Ректификационные колонны для частного применения представляют собой вертикальные трубки диаметром от 40 до 50 мм, высотой не более 180 см, заполненные насадками РПН или СПН. Данные колонны оснащены холодильником или дефлегматором, а так же узлом отбора спирта.


Рассмотрим периодическую ректификацию на колонне насадочного типа с регулярной насадкой РПН, которую каждый сможет повторить в домашних условиях.

При нагреве куба с брагой, являющейся многокомпонентной смесью, в состав которой помимо воды и спирта входят побочные продукты брожения (альдегиды, кислоты, эфиры и т.д.), начинается процесс кипения и испарения данных компонентов. Температура начала процесса может быть разной, все зависит от качественного и количественного состава бражки или спирта-сырца. На протяжении процесса пар поднимается по колонне, начинает ее прогревать и частично конденсироваться, при этом образуется «дикую флегму».

Образование дикой флегмы происходит за счет охлаждения корпуса колонны, в связи с потерями тепла в окружающую среду. Возникают качественные и количественные потери по спирту (до 10%).

В стандартных ректификаторах проблема образования дикой флегмы решается с помощью теплоизолирования колонны.

Высококвалифицированные специалисты Фабрики Доктор Губер нашли другой способ решения данной проблемы путем создания колонны Торнадо. Структура колонны позволяет поднимающемуся пару проходить сначала по внешнему контуру колонны, создавая при этом активный подогрев. В результате потери тепла в окружающую среду от рабочей части колонны становятся минимальными. На выходе готовый продукт получается с улучшенными органолептическими и физико-химическими показателями.

После прогрева колонны пары достигают холодильника или дефлегматора, в котором они конденсируются и возвращаются в колонну в виде флегмы.

Поток флегмы направляется навстречу поднимающимся по колонне парам. Происходит массо- и теплообмен. Температура при ректификации спирта имеет ключевое значение: флегма на своем пути из зоны с низкой температурой в зону более высоких температур поглощает из потока паров высококипящие компоненты (сивушные масла) и выделяет легкокипящие компоненты (спирт). Так как процессы эти протекают на границе раздела фаз, то очень важно создать максимально возможную поверхность контакта. Для этого ректификационные колонны Доктор Губер оснащают РПН, который создает максимальную поверхность контакта по всей ее длине.

Качество получаемого спирта зависит от скорости отбора. А именно, чем больше флегмы забирается из колонны, тем хуже идет процесс массообмена, следовательно уменьшается крепость спирта на выходе из колонны. И наоборот, чем меньше забирается флегмы, тем лучше процесс массобмена и повышение крепости конечного продукта.

Для контроля скорости отбора спирта на колонны устанавливаются игольчатые краны для тонкой регулировки и смотровые стекла.

Создать развитую поверхность контакта недостаточно, необходимо ее правильно орошать. В насадочных колоннах имеет место пристеночный эффект. Флегма проходит не через насадку, а стекает по стенкам колонны, в результате чего падает эффективность ее работы. При правильном заполнении колонны этот эффект минимален, он практически отсутствует в колонне Торнадо, где устанавливается колпачковая тарелка с центральным изливом. В итоге флегма направляется ровно на насадку и достигается максимальный КПД данной колонны.

Что касается диаметра и высоты колонны, по данным Стедмана и Мак-Магона диаметр насадочных колонн оказывает незначительное влияние на качество разделяемых смесей.

Высота колонны. Речь идет о ее рабочей части (часть колонны, которая наполнена насадкой) должна быть не более (6-8)хD. Если высота больше данного выражения, то колонны заполняют секционно, чтобы избежать пристеночного эффекта.

Как выбрать ректификационную колонну

При выборе колонны обращайте внимание на следующие пункты:

  1. Материал колонны, в том числе и наполнитель, должны быть инертны по отношению к парам спирта;
  2. Колонна должна быть оснащена регулируемым узлом отбора;
  3. Наличие высокопроизводительного холодильника или дефлегматора;
  4. Обязательное присутствие атмосферного клапана для безопасной работы.

P.S. Ректификация спирта не сложный процесс и при наличии необходимого оборудования ее с легкостью можно провести в домашних условиях. К 2016 году ассортимент ректификационного оборудования безгранично возрастает. Несмотря на небольшие конструктивные отличия всех аппаратов, процесс ректификации остается неизменным и его качество будет в первую очередь зависеть от знаний и опыта человека, контролирующего процесс.

mob_info