Квантовая физика начать изучение. Квантовая теория

  • Перевод

По словам Оуэна Маруни, работающего физиком в Оксфордском университете, с момента появления квантовой теории в 1900-х годах все говорили о странности этой теории. Как она позволяет частицам и атомам двигаться в нескольких направлениях одновременно, или одновременно вращаться по часовой и против часовой стрелки. Но словами ничего не докажешь. «Если мы рассказываем общественности, что квантовая теория очень странная, нам необходимо проверить это утверждение экспериментально,- говорит Маруни. – А иначе мы не наукой занимаемся, а рассказываем про всякие закорючки на доске».

Именно это навело Маруни сотоварищи на мысль разработать новую серию экспериментов для раскрытия сути волновой функции – загадочной сущности, лежащей в основе квантовых странностей. На бумаге, волновая функция – просто математический объект, обозначаемый буквой пси (Ψ) (одна из тех самых закорючек), и используется для описания квантового поведения частиц. В зависимости от эксперимента, волновая функция позволяет учёным вычислять вероятность наблюдения электрона в каком-то конкретном месте, или шансы того, что его спин ориентирован вверх или вниз. Но математика не говорит о том, что на самом деле такое волновая функция. Это нечто физическое? Или просто вычислительный инструмент, позволяющий работать с невежественностью наблюдателя касательно реального мира?

Использованные для ответа на вопрос тесты очень тонкие, и им всё ещё предстоит выдать однозначный ответ. Но исследователи оптимистичны в том, что развязка близка. И им, наконец, удастся ответить на вопросы, мучавшие всех десятки лет. Может ли частица реально быть во многих местах одновременно? Делится ли Вселенная постоянно на параллельные миры, в каждом из которых существует наша альтернативная версия? Существует ли вообще нечто под названием «объективная реальность»?

«Такие вопросы рано или поздно появляются у любого»,- говорит Алессандро Федриччи, физик из Квинслендского университета (Австралия). «Что на самом деле реально?»

Споры о существе реальности начались ещё тогда, когда физики выяснили, что волна и частица – лишь две стороны одной медали. Классический пример – эксперимент с двумя щелями, где отдельные электроны выстреливаются в барьер, имеющий две щели: электрон ведёт себя так, будто проходит через две щели одновременно, создавая полосатый рисунок интерференции с другой её стороны. В 1926 году австрийский физик Эрвин Шрёдингер придумал волновую функцию для описания этого поведения и вывел уравнение, позволявшее вычислять её для любой ситуации. Но ни он, ни кто либо ещё, не мог ничего рассказать о природе этой функции.

Благодать в невежестве

С практической точки зрения её природа не важна. Копенгагенская интерпретация квантовой теории, созданная в 1920-х годах Нильсом Бором и Вернером Гейзенбергом, использует волновую функцию просто как инструмент для предсказания результатов наблюдений, позволяя не думать о том, что происходит при этом в реальности. «Нельзя винить физиков в такой модели поведения, „заткнись и считай“, поскольку она привела к значительным прорывам в ядерной и атомной физике, физике твёрдого тела и физике элементарных частиц»,- говорит Джин Брикмонт, специалист по статистической физике Католического университета в Бельгии. «Поэтому люди советуют не волноваться относительно фундаментальных вопросов».

Но некоторые всё равно волнуются. К 1930-м годам Эйнштейн отверг копенгагенскую интерпретацию, не в последнюю очередь потому, что она позволяла двум частицам спутывать свои волновые функции, что приводило к ситуации, в которой измерения одной из них могли мгновенно дать состояние другой, даже если они при этом разделены огромными расстояниями. Чтобы не смиряться с этим «пугающим взаимодействием на расстоянии», Эйнштейн предпочитал верить, что волновые функции частиц были неполны. Он говорил, что возможно, у частиц есть некие скрытые переменные, определяющие результат измерения, которые не были замечены квантовой теорией.

Эксперименты с тех пор продемонстрировали работоспособность пугающего взаимодействия на расстоянии, что отвергает концепцию скрытых переменных. но это не остановило остальных физиков интерпретировать их по-своему. Эти интерпретации делятся на два лагеря. Одни соглашаются с Эйнштейном в том, что волновая функция отражает наше невежество. Это то, что философы зовут пси-эпистемическими моделями. А другие рассматривают волновую функцию как реальную вещь – пси-онтические модели.

Чтобы понять разницу, представим себе мысленный эксперимент Шрёдингера, описанный им в 1935 году в письме Эйнштейну. Кот находится в стальной коробке. Коробка содержит образец радиоактивного материала, у которого есть 50% шанс испустить продукт распада за один час, и аппарат, отравляющий кота в случае, если этот продукт будет обнаружен. Поскольку радиоактивный распад – событие квантового уровня, пишет Шрёдингер, правила квантовой теории говорят, что в конце часа волновая функция внутренностей коробки должна быть смесью из мёртвого и живого кота.

«Грубо говоря,- мягко выражается Федриччи,- в пси-эпистемической модели кот в коробке либо жив, либо мёртв, и мы просто не знаем этого из-за того, что коробка закрыта». А в большинстве пси-онтических моделей существует согласие с копенгагенской интерпретацией: пока наблюдатель не откроет коробку, кот одновременно будет и жив и мёртв.

Но тут спор заходит в тупик. Какая из интерпретаций истинна? На этот вопрос сложно ответить экспериментально, поскольку разница между моделями очень тонка. Они по сути должны предсказать то же квантовое явление, что и очень успешная копенгагенская интерпретация. Эндрю Уайт, физик из Квинслендского университета, говорит, что за его 20-летнюю карьеру в квантовых технологиях «эта задача была как огромная гладкая гора без уступов, к которой нельзя было подступиться».

Всё поменялось в 2011 году, с опубликованием теоремы о квантовых измерениях, которая вроде бы устранила подход «волновая функция как невежество». Но по ближайшему рассмотрению оказалось, что эта теорема оставляет достаточно место для их манёвра. Тем не менее, она вдохновила физиков серьёзно задуматься о способах решения спора путём тестирования реальности волновой функции. Маруни уже разработал эксперимент, который в принципе работоспособен, и он с коллегами вскоре нашёл способ заставить его работать на практике. Эксперимент был проведён в прошлом году Федриччи, Уайтом и другими.

Для понимания идеи теста представьте две колоды карт. В одной есть только красные, в другой – только тузы. «Вам дают карту и просят определить, из какой она колоды»,- говорит Мартин Рингбауэр, физик из того же университета. Если это красный туз, «случается пересечение, и вы не сможете сказать этого определённо». Но если вы знаете, сколько карт в каждой колоде, можно подсчитать, как часто будет возникать такая двусмысленная ситуация.

Физика в опасности

Такая же двусмысленность случается и в квантовых системах. Не всегда можно одним измерением узнать, например, как поляризован фотон. «В реально жизни просто отличить запад от направления чуть южнее запада, но в квантовых системах это не так просто»,- говорит Уайт. Согласно стандартной копенгагенской интерпретации, нет смысла спрашивать о поляризации, поскольку у вопроса нет ответа – пока ещё одно измерение не определит ответ в точности. Но согласно модели «волновая функция как невежество», вопрос имеет смысл – просто в эксперименте, как и в том, с колодами карт, не хватает информации. Как и с картами, возможно предсказать, сколько двусмысленных ситуаций можно объяснить таким невежеством, и сравнить с большим количеством двусмысленных ситуаций, разрешённых стандартной теорией.

Именно это и проверяли Федриччи с командой. Группа измеряла поляризацию и другие свойства в луче фотонов, и находила уровень пересечений, который нельзя объяснить моделями «невежества». Результат поддерживает альтернативную теорию – если объективная реальность существует, то существует и волновая функция. «Впечатляет, что команда смогла решить такую сложную задачу таким простым экспериментом»,- говорит Андреа Альберти, физик из Университета Бонна (Германия).

Вывод ещё не высечен в граните: поскольку детекторы улавливали лишь пятую часть использованных в тесте фотонов, приходится предполагать, что утерянные фотоны вели себя точно так же. Это сильное предположение, и сейчас группа работает над тем, чтобы уменьшить потери и выдать более определённый результат. В это время команда МАруни в Оксфорде работает с Университетом Нового Южного Уэльса (Австралия), чтобы повторить такой опыт с ионами, которых проще отслеживать. «В ближайшие шесть месяцев у нас будет неоспоримая версия этого эксперимента»,- говорит Маруни.

Но даже если их ждёт успех и победят модели «волновая функция как реальность», то и у этих моделей есть разные варианты. Экспериментаторам придётся выбирать один из них.

Одна из самых ранних интерпретаций была сделана в 1920-х годах французом Луи де Бройлем, и расширена в 1950-х американцем Дэвидом Бомом. Согласно моделям Бройля-Бома, у частиц есть определённое местоположение и свойства, но их ведёт некая «пилотная волна», которая и определяется как волновая функция. Это объясняет эксперимент с двумя щелями, поскольку пилотная волна может пройти через обе щели и выдать картину интерференции, хотя сам электрон, влекомый ею, проходит только через одну щель из двух.

В 2005 году эта модель получила неожиданную поддержку. Физики Эммануэль Форт, сейчас работающий в Институте Лангевина в Париже, и Ив Кодье из Университета Париж Дидро задали студентам простую, по их мнению, задачку: поставить эксперимент, в котором капли масла, падающие на поднос, будут сливаться из-за вибраций подноса. К удивлению всех вокруг капель начали образовываться волны, когда поднос вибрировал с определённой частотой. «Капли начали передвигаться самостоятельно по своим собственным волнам»,- говорит Форт. «Это был дуальный объект – частица, влекомая волной».

С тех пор форт и Кодье показали, что такие волны могут провести свои частицы в эксперименте с двумя щелями точно как предсказывает теория пилотной волны, и могут воспроизводить другие квантовые эффекты. Но это не доказывает существование пилотных волн в квантовом мире. «Нам говорили, что такие эффекты в классической физике невозможны,- говорит Форт. – И тут мы показали, что возможны».

Ещё один набор моделей, основанных на реальности, разработанный в 1980-х, пытается объяснить сильную разницу свойств у больших и малых объектов. «Почему электроны и атомы могут быть в двух местах одновременно, а столы, стулья, люди и коты – не могут»,-говорит Анджело Баси, физик Триестского университета (Италия). Известные как «коллапсные модели», эти теории говорят, что волновые функции отдельных частиц реальны, но могут терять свои квантовые свойства и приводить частицу в определённое положение в пространстве. Модели построены так, что шансы такого коллапса чрезвычайно малы для отдельной частицы, так что на атомном уровне доминируют квантовые эффекты. Но вероятность коллапса быстро растёт при объединении частиц, и макроскопические объекты полностью теряют свои квантовые свойства и ведут себя согласно законам классической физики.

Один из способов это проверить – искать квантовые эффекты у больших объектов. Если верна стандартная квантовая теория, то ограничений на размер нет. И физики уже провели эксперимент с двумя щелями при помощи больших молекул. Но если верны модели коллапса, то квантовые эффекты не будут видны при превышении определённой массы. Разные группы планируют искать эту массу, используя холодные атомы, молекулы, металлические кластеры и наночастицы. Они надеются обнаружить результаты в ближайшие десять лет. «Что классно с этими экспериментами, так это то, что мы будем подвергать квантовую теорию точным тестам там, где её ещё не проверяли»,- говорит Маруни.

Параллельные миры

Одна модель «волновая функция как реальность» уже известна и любима писателями-фантастами. Это многомировая интерпретация, выработанная в 1950-х Хью Эвереттом, который в то время был студентом Принстонского университета в Нью-Джерси. В этой модели волновая функция так сильно определяет развитие реальности, что при каждом квантовом измерении Вселенная расщепляется на параллельные миры. Иными словами, открывая коробку с котом, мы порождаем две Вселенные – одна с мёртвым котом, а другая – с живым.

Сложно разделить эту интерпретацию и стандартную квантовую теорию, поскольку их предсказания совпадают. Но в прошлом году Говард Вайзман из Гриффитского университета в Брисбейне с коллегами предложил модель мультивёрса, которую можно проверить. В их модели нет волновой функции – частицы подчиняются классической физике, законам Ньютона. А странные эффекты квантового мира появляются потому, что между частицами и их клонами в параллельных вселенных есть отталкивающие силы. «Отталкивающая сила между ними порождает волны, распространяющиеся по всем параллельным мирам»,- говорит Вайзман.

Используя компьютерную симуляцию, в которой взаимодействовали 41 вселенная, они показали, что модель грубо воспроизводит несколько квантовых эффектов, включая траектории частиц в эксперименте с двумя щелями. При увеличении количества миров рисунок интерференции стремится к реальному. Поскольку предсказания теории разнятся в зависимости от количества миров, говорит Вайзман, можно проверить, права ли модель мультивёрса – то есть, что никакой волновой функции нет, а реальность работает по классическим законам.

Поскольку в этой модели волновая функция не нужна, она останется жизнеспособной, даже если будущие эксперименты исключат модели с «невежеством». Кроме неё выживут другие модели, например, копенгагенская интерпретация, которые утверждают, что нет объективной реальности, а есть лишь вычисления.

Но тогда, как говорит Уайт, этот вопрос и станет объектом изучения. И хотя пока никто не знает, как это сделать, «что было бы реально интересным, так это разработать тест, проверяющий, есть ли у нас вообще объективная реальность».

Думаю, можно сказать, что никто не понимает квантовую механику

Физик Ричард Фейнман

Высказывание о том, что изобретение полупроводниковых приборов было революцией, не будет преувеличением. Это не только впечатляющее технологическое достижение, но оно также проложило путь для событий, которые навсегда изменяют современное общество. Полупроводниковые приборы применяются во всевозможных устройствах микроэлектроники, в том числе и в компьютерах, отдельных видах медицинского диагностического и лечебного оборудования, популярных телекоммуникационных устройствах.

Но за этой технологической революцией стоит даже больше, революция в общей науке: область квантовой теории . Без этого прыжка в понимании естественного мира, развитие полупроводниковых приборов (и более продвинутых разрабатываемых электронных устройств) никогда бы не удалось. Квантовая физика - это невероятно сложный раздел науки. В данной главе дается лишь краткий обзор. Когда ученые уровня Фейнмана говорят, что «никто не понимает [это]», вы можете быть уверены, что это действительно сложная тема. Без базового понимания квантовой физики или, по крайней мере, понимания научных открытий, которые привели к их разработке, невозможно понять, как и почему работают полупроводниковые электронные приборы. Большинство учебников по электронике пытаются объяснить полупроводники с точки зрения «классической физики», в результате делая их еще более запутанными для понимания.

Многие из нас видели диаграммы моделей атомов, которые похожи на рисунок ниже.

Атом Резерфорда: отрицательные электроны вращаются вокруг небольшого положительного ядра

Крошечные частицы материи, называемые протонами и нейтронами , составляют центр атома; электроны вращаются как планеты вокруг звезды. Ядро несет положительный электрический заряд, благодаря наличию протонов (нейтроны не имеют никакого электрического заряда), в то время как уравновешивающий отрицательный заряд атома находится в движущихся по орбите электронах. Отрицательные электроны притягиваются к положительным протонам, как планеты притягиваются силой притяжения к Солнцу, однако орбиты стабильны, благодаря движению электронов. Мы обязаны этой популярной моделью атома работе Эрнеста Резерфорда, который примерно в 1911 году экспериментально определил, что положительные заряды атомов сосредоточены в крошечном, плотном ядре, а не равномерно распределены по диаметру, как ранее предполагал исследователь Дж. Дж. Томсон.

Эксперимент Резерфорда по рассеянию заключается в бомбардировке тонкой золотой фольги положительно заряженными альфа-частицами, как показано на рисунке ниже. Молодые аспиранты Х. Гейгер и Э. Марсден получили неожиданные результаты. Траектория движения некоторых альфа-частиц была отклонена на большой угол. Некоторые альфа-частицы были рассеяны в обратном направлении, под углом почти на 180°. Большинство частиц прошло через золотую фольгу, не изменив траекторию пути, будто фольги и не было совсем. Факт того, что несколько альфа-частиц испытывали большие отклонения в траектории движения, указывает на присутствие ядер с небольшим положительным зарядом.

Рассеяние Резерфорда: пучок альфа-частиц рассеивается тонкой золотой фольгой

Хотя модель атома Резерфорда подтверждалась экспериментальными данными лучше, чем модель Томсона, она всё еще была неидеальна. Были предприняты дальнейшие попытки определения структуры атома, и эти усилия помогли проложить путь для странных открытий квантовой физики. Сегодня наше понимание атома немного сложнее. Тем не менее, несмотря на революцию квантовой физики и ее вклад в наше понимание строения атома, изображение солнечной системы Резерфорда в качестве структуры атом, прижилось в массовом сознании до такоей степени, что оно сохраняется в областях образования, даже если оно неуместно.

Рассмотрим это краткое описание электронов в атоме, взятое из популярного учебника по электронике:

Вращающиеся отрицательные электроны притягиваются к положительному ядру, которое приводит нас к вопросу о том, почему электроны не летят в ядро атом. Ответ в том, что вращающиеся электроны остаются на своей стабильной орбите из-за двух равных, но противоположных сил. Центробежная сила, действующая на электроны, направлена наружу, а сила притяжения зарядов пытается притянуть электроны к ядру.

В соответствии с моделью Резерфорда, автор считает электроны твердыми кусками материи, занимающими круглые орбиты, их притяжение внутрь к противоположно заряженному ядру уравновешивается их движением. Использование термина «центробежная сила» технически неверно (даже для вращающихся на орбитах планет), но это легко простить из-за популярного принятия модели: на самом деле, не существует такого понятия, как сила, отталкивающая любое вращающееся тело от центра его орбиты. Кажется, что это так потому, что инерция тела стремиться сохранить его движение по прямой линии, а так как орбита является постоянным отклонением (ускорением) от прямолинейного движения, есть постоянное инерционное противодействие к любой силе, притягивающей тело к центру орбиты (центростремительной), будь то гравитация, электростатическое притяжения, или даже натяжение механической связи.

Тем не менее, реальная проблема с этим объяснением, в первую очередь, заключается в идее электронов, движущихся по круговым орбитам. Проверенный факт, что ускоренные электрические заряды испускают электромагнитное излучение, этот факт был известен даже во времена Резерфорда. Так как вращательное движение является формой ускорения (вращающийся объект в постоянном ускорении, уводящем объект от нормального прямолинейного движения), электроны во вращающемся состоянии должны выбрасывать излучение, как грязь от буксующего колеса. Электроны, ускоренные по круговым траекториям, в ускорителях частиц, называемых синхротронами , как известно, делают это, и результат называется синхротронное излучение . Если бы электроны теряли энергию таким способом, их орбиты, в конечном счете, нарушились бы, и в результате они столкнулись бы с положительно заряженным ядром. Тем не менее, внутри атомов этого обычно не происходит. Действительно, электронные «орбиты» удивительно устойчивы в широком диапазоне условий.

Кроме того, эксперименты с «возбужденными» атомами показали, что электромагнитная энергия излучается атомом только на определенных частотах. Атомы «возбуждаются» внешними воздействиями, такими как свет, как известно, чтобы поглотить энергию и вернуть электромагнитные волны на определенных частотах, как камертон, который не звонит на определенной частоте, пока его не ударят. Когда свет, излучаемый возбужденным атомом, делится призмой на составные частоты (цвета), обнаруживаются отдельные линии цветов в спектре, картина спектральных линий является уникальной для химического элемента. Это явление обычно используется для идентификации химических элементов, и даже для измерения пропорций каждого элемента в соединении или химической смеси. Согласно солнечной системе атомной модели Резерфорда (относительно электронов, как кусков материи, свободно вращающихся на орбите с каким-то радиусом) и законам классической физики, возбужденные атомы должны вернуть энергию в практически бесконечном диапазоне частот, а не на избранных частотах. Другими словами, если модель Резерфорда была правильной, то не было бы эффекта «камертона», и цветовой спектр, излучаемый любым атомом, выглядел бы как непрерывная полоса цветов, а не как несколько отдельных линий.


Боровская модель атома водорода (с орбитами, нарисованными в масштабе) предполагает нахождение электронов только на дискретных орбитах. Электроны, переходящие с n=3,4,5 или 6 на n=2, отображаются на серии спектральных линий Бальмера

Исследователь по имени Нильс Бор попытался улучшить модель Резерфорда, после ее изучения в лаборатории Резерфорда в течение нескольких месяцев в 1912 году. Пытаясь согласовать результаты других физиков (в частности, Макса Планка и Альберта Эйнштейна), Бор предположил, что каждый электрон обладал определенным, конкретным количеством энергии, и что их орбиты распределяются таким образом, что каждый из них может занимать определенные места вокруг ядра, как шарики, зафиксированные на круговых дорожках вокруг ядра, а не как свободно двигающиеся спутники, как предполагалось ранее (рисунок выше). В знак уважения к законам электромагнетизма и ускоряющих зарядов Бор ссылался на «орбиты», как на стационарные состояния , чтобы избежать трактования, что они были подвижны.

Хотя амбициозная попытка Бора переосмысления строения атома, которое ближе согласовывалось с экспериментальными данными, и была важной вехой в физике, но не была завершена. Его математический анализ лучше предсказывал результаты экспериментов по сравнению с анализами, производимых согласно предыдущим моделям, но еще оставались без ответов вопросы о том, почему электроны должны вести себя таким странным образом. Утверждение, что электроны существовали в стационарных квантовых состояниях вокруг ядра, соотносилось с экспериментальными данными лучше, чем модель Резерфорда, но не говорило, что заставляет электроны принимать эти особые состояния. Ответ на этот вопрос должен был прийти от другого физика Луи де Бройля спустя примерно десять лет.

Де Бройль предположил, что электроны, как фотоны (частицы света), обладают и свойствами частиц, и свойствами волн. Опираясь на это предположение, он предположил, что анализ вращающихся электронов с точки зрения волн подходит лучше, чем с точки зрения частиц, и может дать больше понимания об их квантовой природе. И действительно, в понимании был совершен еще один прорыв.


Струна, вибрирующая на резонансной частоте между двумя фиксированными точками, образует стоячую волну

Атом, согласно де Бройлю, состоял из стоячих волн, явление, хорошо известное физикам в различных формах. Как дернутая струна музыкального инструмента (рисунок выше), вибрирующая на резонансной частоте, с «узлами» и «антиузлами» в стабильных местах вдоль своей длины. Де Бройль представил электроны вокруг атомов в виде волн, изогнутых в круг (рисунок ниже).


«Вращающийся» электроны, как стоячая волна вокруг ядра, (a) два цикла в орбите, (b) три цикла в орбите

Электроны могут существовать только на определенных, конкретных «орбитах» вокруг ядра, потому что они являются единственными расстояниями, на которых концы волны совпадают. При любом другом радиусе волна будет разрушительно сталкиваться сама с собой и, таким образом, перестанет существовать.

Гипотеза де Бройля дала как математическое обеспечение, так и удобную физическую аналогию для объяснения квантовых состояний электронов внутри атома, но его модель атома была всё еще неполной. В течение нескольких лет физики Вернер Гейзенберг и Эрвин Шредингер, работая независимо друг от друга, трудились над концепцией корпускулярно-волнового дуализма де Бройля, чтобы создать более строгие математические модели субатомных частиц.

Этому теоретическому продвижению от примитивной модели стоячей волны де Бройля к моделям матрицы Гейзенберга и дифференциального уравнения Шредингера было дано название квантовая механика, она ввела довольно шокирующую характеристику в мир субатомных частиц: признак вероятности, или неопределенности. По новой квантовой теории, было невозможно определить точное положение и точный импульс частицы в один момент. Популярное объяснение этого «принципа неопределенности» заключалось в том, что существовала погрешность измерения (то есть, пытаясь точно измерить положение электрона, вы мешаете его импульсу, и, следовательно, не можете знать, что было до начала измерения положения, и наоборот). Сенсационный вывод квантовой механики заключается в том, что частицы не имеют точных положений и импульсов, и из-за связи этих двух величин их совокупная неопределенность никогда не уменьшится ниже определенного минимального значения.

Эта форма связи «неопределенности» существует и в других областях, кроме квантовой механики. Как обсуждалось в главе «Сигналы переменного тока смешанной частоты» тома 2 этой серии книг, есть взаимоисключающие связи между уверенностью в данных временной области формы сигнала и его данными в частотной области. Проще говоря, чем больше мы знаем его составляющие частоты, тем менее точно мы знаем его амплитуду во времени, и наоборот. Цитирую себя:

Сигнал бесконечной длительности (бесконечное количество циклов) может быть проанализирован с абсолютной точностью, но чем меньше циклов доступно компьютеру для анализа, тем меньше точность анализа... Чем меньше периодов сигнала, тем меньше точность его частоты. Принимая эту концепцию до ее логической крайности, короткий импульс (даже не полный период сигнала) на самом деле не имеет определенной частоты, представляет собой бесконечный диапазон частот. Данный принцип является общим для всех волновых явлений, а не только для переменных напряжений и токов.

Чтобы точно определить амплитуду изменяющегося сигнала, мы должны измерить его в очень короткий промежуток времени. Однако выполнение этого ограничивает наши знания о частоте волны (волна в квантовой механике не должна быть подобно синусоидальной волне; такое подобие является частным случаем). С другой стороны, чтобы определить частоту волны с большой точностью, мы должны измерять его в течение большого количества периодов, а значит, мы потеряем из виду его амплитуду в любой заданный момент. Таким образом, мы не можем одновременно знать мгновенную амплитуду и все частоты любой волны с неограниченной точностью. Еще одна странность, эта неопределенность гораздо больше неточности наблюдателя; она находится в самой природе волны. Это не так, хотя можно бы, учитывая соответствующие технологии, обеспечить точные измерения и мгновенной амплитуды, и частоты одновременно. В буквальном смысле, волна не может точную мгновенную амплитуду и точную частоту одновременно.

Минимальная неопределенность положения частицы и импульса, выраженная Гейзенбергом и Шредингером, не имеет ничего общего с ограничением в измерении; скорее это внутреннее свойство природы корпускулярно-волнового дуализма частицы. Следовательно, электроны на самом деле не существуют в своих «орбитах» как точно определенные частицы материи или даже как точно определенные формы волн, а скорее как «облака» - технический термин волновой функции распределения вероятности, как если бы каждый электрон был «рассеян» или «размазан» в диапазоне положений и импульсов.

Этот радикальный взгляд на электроны, как на неопределенные облака поначалу противоречит изначальному принципу квантовых состояний электронов: электроны существуют в дискретных, определенных «орбитах» вокруг ядра атома. Этот новый взгляд, в конце концов, был открытием, которое привело к образованию и объяснению квантовой теории. Как странно кажется, что теория, созданная для объяснения дискретного поведения электронов, заканчивается, объявив, что электроны существуют как «облака», а не как отдельные кусочки материи. Тем не менее, квантовое поведение электронов зависит не от электронов, имеющих определенные значения координат и импульса, а от других свойств, называемых квантовыми числами . В сущности, квантовая механика обходится без распространенных понятий абсолютного положения и абсолютного момента, а заменяет их абсолютными понятиями таких типов, у которых нет аналогов в общей практике.

Даже если электроны, как известно, существуют в бесплотных, «облачных» формах распределенной вероятности, а не в виде отдельных частей материи, эти «облака» имеют несколько другие характеристики. Любой электрон в атоме может быть описан четырьмя числовыми мерами (упомянутыми ранее квантовыми числами), которые называются главное (радиальное) , орбитальное (азимутальное) , магнитное и спиновое числа. Ниже представлен краткий обзор значения каждого из этих чисел:

Главное (радиальное) квантовое число : обозначается буквой n , это число описывает оболочку, на которой пребывает электрон. Электронная «оболочка» представляет собой область пространства вокруг ядра атома, на которой электроны могут существовать, соответствуя моделям стабильной «стоячей волны» де Бройля и Бора. Электроны могут «прыгать» с оболочки на оболочку, но не могут существовать между ними.

Главное квантовое число должно быть положительным целым числом (большим или равным 1). Другими словами, главное квантовое число электрона не может быть 1/2 или -3. Эти целые числа были выбраны не произвольно, а через экспериментальные доказательства светового спектра: разные частоты (цвета) света, излучаемые возбужденными атомами водорода, следуют математической зависимости, зависящей от конкретных целых значений, как показано на рисунке ниже.

Каждая оболочка обладает способностью удерживать несколько электронов. В качестве аналогии для электронных оболочек можно привести концентрические ряды сидений в амфитеатре. Так же, как человек, сидящий в амфитеатре, должен выбрать ряд, чтобы сесть (он не может сесть между рядов), электроны должны «выбрать» конкретную оболочку, чтобы «сесть». Как и ряды в амфитеатре, крайние оболочки удерживают больше электронов по сравнению с оболочками ближе к центру. Также электроны стремятся найти наименьшую доступную оболочку, как люди в амфитеатре ищут место, ближайшее к центральной сцене. Чем выше номер оболочки, тем больше энергии у электронов на ней.

Максимальное количество электронов, которое какая-либо оболочка может удерживать, описывается уравнение 2n 2 , где n - главное квантовое число. Таким образом, первая оболочка (n = 1) может содержать 2 электрона; вторая оболочка (n = 2) - 8 электронов; и третья оболочка (n = 3) - 18 электронов (рисунок ниже).


Главное квантовое число n и максимальное количество электронов связаны формулой 2(n 2). Орбиты не в масштабе.

Электронные оболочки в атоме были обозначаются буквами, а не цифрами. Первая оболочка (n = 1) была обозначена K, вторая оболочка (n = 2) L, третья оболочка (n = 3) M, четвертая оболочка (n = 4) N, пятая оболочка (n = 5) O, шестая оболочка (n = 6) P, и седьмая оболочка (n = 7) B.

Орбитальное (азимутальное) квантовое число : оболочка, состоящая из подоболочек. Кому-то может быть удобнее думать о подоболочках как о простых секциях оболочек, как полосы делящие дорогу. Подоболочки гораздо более странны. Подоболочки - это области пространства, где могут существовать электронные «облака», и на самом деле различные подоболочки имеют различные формы. Первая подоболочка в форме шара (рисунок ниже (s)), который имеет смысл, когда визуализируется в виде электронного облака, окружающего ядро атома в трех измерениях.

Вторая подоболочка напоминает гантель, состоящую из двух «лепестков», соединенных в одной точке недалеко от центра атома (рисунок ниже (p)).

Третья подоболочка обычно напоминает набор из четырех «лепестков», сгруппированных вокруг ядра атома. Эти формы подоболочек напоминают графические изображения диаграмм направленности антенн с лепестками, похожими на луковицы, простирающимися от антенны в различных направлениях (рисунок ниже (d)).


Орбитали:
(s) трехкратная симметричность;
(p) Показана: p x , одна из трех возможных ориентаций (p x , p y , p z), вдоль соответствующих осей;
(d) Показана: d x 2 -y 2 похожа на d xy , d yz , d xz . Показана: d z 2 . Количество возможных d-орбиталей: пять.

Допустимыми значениями орбитального квантового числа являются положительные целые числа, как и для главного квантового числа, но также включают в себя ноль. Эти квантовые числа для электронов обозначаются буквой l. Количество подоболочек равно главному квантовому числу оболочки. Таким образом, первая оболочка (n = 1) имеет одну подоболочку с номером 0; вторая оболочка (n = 2) имеет две подоболочки с номерами 0 и 1; третья оболочка (n = 3) имеет три подоболочки с номерами 0, 1 и 2.

Старое соглашение описания подоболочек использовало буквы, а не цифры. А этом формате, первая подоболочка (l = 0) обозначалась s, вторая подоболочка (l = 1) обозначалась p, третья подоболочка (l = 2) обозначалась d, и четвертая подоболочка (l = 3) обозначалась f. Буквы пришли от слов: sharp , principal , diffuse и fundamental . Вы по-прежнему можете увидеть эти обозначения во многих периодических таблицах, используемые для обозначения электронной конфигурации внешних (валентных ) оболочек атомов.


(a) представление атома серебра по Бору,
(b) орбитальное представление Ag с разделением оболочек на подоболочки (орбитальное квантовое число l).
Данная диаграмма не подразумевает ничего о фактическом положении электронов, а представляет только энергетические уровни.

Магнитное квантовое число : Магнитное квантовое число для электрона классифицирует, ориентацию фигуры подоболочки электрона. «Лепестки» подоболочек могут быть направлены в нескольких направлениях. Эти различные ориентации называются орбиталями. Для первой подоболочки (s; l = 0), которая напоминает сферу, «направление» не указывается. Для второй (p; l = 1) подоболочки в каждой оболочке, которая напоминает гантель, указывающую в трех возможных направлениях. Представьте три гантели, пересекающиеся в начале координат, каждая направлена вдоль своей оси в трехосной системе координат.

Допустимые значения для данного квантового числа состоят из целых чисел, начиная от -l до l, а обозначается данное число как m l в атомной физике и l z в ядерной физике. Чтобы рассчитать количество орбиталей в любой подоболочке, необходимо удвоить номер подоболочки и добавить 1, (2∙l + 1). Например, первая подоболочка (l = 0) в любой оболочке содержит одну орбиталь с номером 0; вторая подоболочка (l = 1) в любой оболочке содержит три орбитали с номерами -1, 0 и 1; третья подоболочка (l = 2) содержит пять орбиталей с номерами -2, -1, 0, 1 и 2; и так далее.

Как и главное квантовое число, магнитное квантовое число возникло прямо из экспериментальных данных: эффект Зеемана, разделение спектральных линий, подвергая ионизированный газ воздействию магнитного поля, отсюда и название «магнитное» квантовое число.

Спиновое квантовое число : как и магнитное квантовое число, данное свойство электронов атома было обнаружено с помощью экспериментов. Тщательное наблюдение спектральных линий показало, что каждая линия была на самом деле парой очень близко расположенных линий, было предположение, что эта так называемая тонкая структура была результатом каждого электрона, «вращающегося» вокруг своей оси, как планета. Электроны с разным «вращением» отдавали бы немного отличающиеся частоты света при возбуждении. Концепция вращающегося электрона в настоящее время устарела, будучи более подходящей для (неправильного) взгляда на электроны, как на отдельные частицы материи, а не как на «облака», но название осталось.

Спиновые квантовые числа обозначаются как m s в атомной физике и s z в ядерной физике. На каждой орбитали на каждой подоболочке в каждой оболочке может быть два электрона, один со спином +1/2, а другой со спином -1/2.

Физик Вольфганг Паули разработал принцип, объясняющий упорядоченность электронов в атоме в соответствии с этими квантовыми числами. Его принцип, называемый принципом запрета Паули , утверждает, что два электрона в одном атоме не могут занимать одинаковые квантовые состояния. То есть, каждый электрон в атоме имеет уникальный набор квантовых чисел. Это ограничивает число электронов, которые могут занимать какую-либо орбиталь, подоболочку и оболочку.

Здесь показано расположение электронов в атоме водорода:


С одним протоном в ядре, атом принимает один электрон для своего электростатического баланса (положительный заряд протона в точности уравновешивается отрицательным зарядом электрона). Этот электрон находится на нижней оболочке (n = 1), первой подоболочке (l = 0), на единственной орбитали (пространственная ориентация) этой подоболочки (m l = 0), с значением спина 1/2. Общий метод описания этой структуры выполняется с помощью перечисления электронов в соответствии с их оболочками и подоболочками согласно соглашению, называемому спектроскопическим обозначением . В этом обозначении, номер оболочки показывается как целое число, подоболочка как буква (s,p,d,f), и общее количество электронов в подоболочке (все орбитали, все спины) как верхний индекс. Таким образом, водород с его единственным электроном, размещенным на базовом уровне, описывается как 1s 1 .

Переходя к следующему атому (по порядку атомного номера), мы получаем элемент гелий:

Атом гелия состоит из двух протонов в ядре, а это требует два электрона, чтобы сбалансировать двойной положительный электрический заряд. Так как два электрона - один со спином 1/2 и другой со спином -1/2 - находятся на одной орбитали, электронная структура гелия не требует дополнительных подоболочек или оболочек, чтобы удерживать второй электрон.

Тем не менее, атом, требующий три и более электрона, будет нуждаться в дополнительных подоболочках, чтобы удерживать все электроны, так как только два электрона могут находиться на нижней оболочке (n = 1). Рассмотрим следующий атом в последовательности увеличивающихся атомных номеров, литий:


Атом лития использует часть емкости L оболочки (n = 2). Эта оболочка на самом деле имеет общую емкость величиной восемь электронов (максимальная емкость оболочки = 2n 2 электронов). Если мы рассмотрим структуру атома с полностью заполненной L оболочкой, мы увидим, как все комбинации подоболочек, орбиталей и спинов заняты электронами:

Часто, при назначении атому спектроскопического обозначения, любые полностью заполненные оболочки пропускаются, а не заполненные оболочки и заполненные оболочки высшего уровня обозначаются. Например, элемент неон (показан на рисунке выше), который имеет две полностью заполненных оболочки, может быть спектрально описан просто как 2p 6 , а не как 1s 22 s 22 p 6 . Литий с его полностью заполненной K-оболочкой и единственным электроном на L-оболочке, может быть описан просто как 2s 1 , а не 1s 22 s 1 .

Пропуск полностью заполненных оболочек нижнего уровня выполняется не только для удобства записи. Он также иллюстрирует основной принцип химии: химическое поведение элемента в первую очередь определяется его незаполненными оболочками. И водород, и литий обладают на своих внешних оболочках одним электроном (as 1 и 2s 1 соответственно), то есть, оба элемента обладают схожими свойствами. Оба обладают высокой реакционной способностью, и вступают в реакции почти одинаковыми способами (связывание с аналогичными элементами в аналогичных условиях). Не имеет большого значения, что литий имеет полностью заполненную K-оболочку под почти свободной L-оболочкой: незаполненная L-оболочка - это та оболочка, которая и определяет его химическое поведение.

Элементы, имеющие полностью заполненные внешние оболочки, классифицируются как благородные и отличаются почти полным отсутствием реакции с другими элементами. Эти элементы классифицировались как инертные, когда считалось, что они совсем не вступают в реакции, но, как известно, они образуют соединения с другими элементами при определенных условиях.

Так как элементы с одинаковыми конфигурациями электронов в своих внешних оболочках имеют сходные химические свойства, Дмитрий Менделеев соответственных образом организовал химические элементы в таблице. Данная таблица известна как , и современные таблицы следуют этому общему виду, показанному на рисунке ниже.


Периодическая таблица химических элементов

Дмитрий Менделеев, русский химик, был первым, кто разработал периодическую таблицу элементов. Несмотря на то, что Менделеев организовал свою таблицу в соответствии с атомной массой, а не атомным номером, и создал таблицу, которая была, не столь полезна, как современные периодические таблицы, его разработка выступает в качестве отличного примера научного доказательства. Увидев закономерности периодичности (аналогичные химические свойства в соответствии с атомной массой), Менделеев выдвинул гипотезу, что все элементы должны вписываться в эту упорядоченную схему. Когда он обнаружил «пустые» места в таблице, он следовал логике существующего порядка и предположил существование еще неизвестных элементов. Последующее открытие этех элементов подтвердило научную правильность гипотезы Менделеева, дальнейшие открытия привели к тому виду периодической таблицы, которую мы используем сейчас.

Вот так должна работать наука: гипотезы ведут к логическими заключениями и принимаются, изменяются или отклоняются в зависимости от согласованности экспериментальных данных с их выводами. Любой дурак может сформулировать гипотезу постфактум, чтобы объяснить имеющиеся экспериментальные данные, и многие так и делают. Что отличается научную гипотезу от спекуляции постфактум, так это предсказание будущих экспериментальных данных, которые пока не собраны, и, возможно, опровержение в результате этих данных. Смело ведите гипотезу к ее логическому заключению(-ям) и попытка предсказать результаты будущих экспериментов это не догматический прыжок веры, а скорее публичная проверка этой гипотезы, открытый вызов противникам гипотезы. Другими словами, научные гипотезы всегда «рискованны» из-за попытки предсказать результаты еще не проведенных экспериментов, и поэтому могут быть опровергнуты, если эксперименты пройдут не так, как ожидалось. Таким образом, если гипотеза правильно предсказывает результаты повторных экспериментов, ее ложность опровергнута.

Квантовая механика, сначала как гипотезы, а затем в качестве теории, оказалась чрезвычайно успешной в прогнозировании результатов экспериментов, следовательно, получила высокую степень научного доверия. У многих ученых есть основания полагать, что это неполная теория, так как ее прогнозы больше правдивы на микрофизических масштабах, а не в макроскопических размерах, но, тем не менее, это чрезвычайно полезная теория для объяснения и прогнозирования взаимодействия частиц и атомов.

Как вы уже увидели в этой главе, квантовая физика имеет важное значение при описании и прогнозировании множества различных явлений. В следующем разделе мы увидим, ее значение в электрической проводимости твердых веществ, в том числе и полупроводников. Проще говоря, ничего в химии или в физике твердого тела не имеет смысла в популярной теоретической структуре электронов, существующих как отдельные частицы материи, кружащиеся вокруг ядра атом, как миниатюрные спутники. Когда электроны рассматриваются как «волновые функции», существующие в определенных, дискретных состояниях, которые регулярны и периодичны, тогда поведение вещества может быть объяснено.

Подведем итоги

Электроны в атомах существуют в «облаках» распределенной вероятности, а не как дискретные частицы материи, вращающиеся вокруг ядра, как миниатюрные спутники, как показывают распространенные примеры.

Отдельные электроны вокруг ядра атом стремятся к уникальным «состояниям», описываемым четырьмя квантовыми числами: главное (радиальное) квантовое число , известное как оболочка ; орбитальное (азимутальное) квантовое число , известное как подоболочка ; магнитное квантовое число , описывающее орбиталь (ориентацию подоболочки); и спиновое квантовое число , или просто спин . Эти состояния квантовые, то есть «между ними» нет условий для существования электрона, кроме состояний, которые вписываются в схему квантовой нумерации.

Гланое (радиальное) квантовое число (n) описывает базовый уровень или оболочку, на которой находится электрон. Чем больше это число, тем больше радиус электронного облака от ядра атома, и тем больше энергия электрона. Главные квантовые числа являются целыми числами (положительными целыми)

Орбитальное (азимутальное) квантовое число (l) описывает форму электронного облака в конкретной оболочке или уровне и часто известно, как «подоболочка». В любой оболочке столько подоболочек (форм электронного облака), каково главное квантовое число оболочки. Азимутальные квантовые числа - целые положительные числа, начинающиеся с нуля и заканчивающиеся числом, меньшим главного квантового числа на единицу (n - 1).

Магнитное квантовое число (m l) описывает, какую ориентацию имеет подоболочка (фигура электронного облака). Подоболочки могут допускать столько различных ориентаций, чему равен удвоенный номер подоболочки (l) плюс 1, (2l+1) (то есть, для l=1, m l = -1, 0, 1), и каждая уникальная ориентация называется орбиталью. Эти числа - целые числа, начинающиеся от отрицательного значения номера подоболочки (l) через 0 и заканчивающиеся положительным значением номера подоболочки.

Спиновое квантовое число (m s) описывает другое свойство электрона и может принимать значения +1/2 и -1/2.

Принцип запрета Паули говорит, что два электрона в атоме не могут разделять один и тот же набор квантовых чисел. Следовательно, может быть не более двух электронов на каждой орбитали (спин=1/2 и спин=-1/2), 2l+1 орбиталей в каждой подоболочке, и n подоболочек в каждой оболочке, и не более.

Спектроскопическое обозначение - это соглашение для обозначения электронной структуры атома. Оболочки показываются как целые числа, за ними следуют буквы подоболочек (s, p, d, f) с числами в верхнем индексе, обозначающими общее количество электронов, находящихся в каждой соответствующей подоболочке.

Химическое поведение атома определяется исключительно электронами в незаполненных оболочках. Оболочки низкого уровня, которые полностью заполнены мало или совсем не влияют на химические характеристики связывания элементов.

Элементы с полностью заполненными электронными оболочками почти полностью инертны, и называются благородными элементами (ранее были известны как инертные).

От греческого «фюзис» происходит слово «физика». Это означает «природа». Аристотель, живший в четвертом веке до нашей эры, впервые ввел данное понятие.

«Русской» физика стала с подачи М. В. Ломоносова, когда он перевел первый учебник с немецкого языка.

Наука физика

Физика — это одна из основных В мире вокруг постоянно происходят различные процессы, изменения, то есть явления.

Например, кусочек льда в теплом месте начнет таять. А вода в чайнике на огне закипает. Электрический ток, пропущенный по проволоке, нагреет ее и даже раскалит. Каждый из этих процессов — явление. В физике это механические, магнитные, электрические, звуковые, тепловые и световые изменения, изучающиеся наукой. Они еще называются физическими явлениями. Рассматривая их, ученые выводят законы.

Задача науки состоит в открытии этих законов и их исследовании. Природу изучают такие науки, как биология, география, химия и астрономия. Все они применяют физические законы.

Термины

Помимо обычных в физике используют и специальные слова, называющиеся терминами. Это «энергия» (в физике это мера разных форм взаимодействия и движения материи, а также перехода из одной в другую), «сила» (мера интенсивности влияния других тел и полей на какое-либо тело) и многие другие. Часть из них постепенно вошла в разговорную речь.

Например, используя слово «энергия» в повседневной жизни применительно к человеку, мы можем оценивать последствия его действий, но энергия в физике — это мера изучения множеством разных способов.

Все тела в физике называют физическими. Они имеют объем и форму. Состоят из веществ, которые, в свою очередь, являются одними из видов материи — это все существующее во Вселенной.

Опыты

Многое из того, что знают люди, было получено в ходе наблюдений. Чтобы изучить явления, их постоянно наблюдают.

Возьмем, например, падение на землю различных тел. Необходимо выяснить, отличается ли это явление при падении тел неодинаковой массы, разной высоте и так далее. Ждать и наблюдать за разными телами было бы очень долго и далеко не всегда успешно. Поэтому для подобных целей проводят опыты. Они отличаются от наблюдений, так как их специально реализуют по заранее составленному плану и с определенными целями. Обычно в плане строят какие-либо догадки предварительно, то есть выдвигают гипотезы. Таким образом, в ходе проведения опытов они будут опровергаться или подтверждаться. После обдумывания и объяснения результатов опытов делаются выводы. Так получаются научные знания.

Величины и единицы их измерения

Часто, изучая какие-либо выполняют разные измерения. При падении тела, к примеру, измеряют высоту, массу, скорость и время. Все это является то есть тем, что можно измерить.

Измерение величины означает сравнение ее с такой же величиной, которая принимается за единицу (длина стола сравнивается с единицей длины — метром или другой). Каждая такая величина имеет свои единицы.

Во всех странах стараются пользоваться едиными единицами. В России, как и в других государствах, используется Международная система единиц СИ (что означает "система интернациональная"). В ней приняты следующие единицы:

  • длина (характеристика протяженности линий в числовом выражении) — метр;
  • время (протекание процессов, условие возможного изменения) — секунда;
  • масса (это в физике характеристика, определяющая инертные и гравитационные свойства материи) — килограмм.

Часто бывает необходимо применять единицы, намного превышающие общепринятые по величине — кратные. Их называют с соответствующими приставками из греческого: «дека», «гекто», «кило» и так далее.

Единицы, которые меньшие принятых, называются дольными. К ним применяются приставки из латинского языка: «деци», «санти», «милли» и так далее.

Приборы для измерений

Чтобы проводить опыты, нужны приборы. Простейшими из них являются линейка, цилиндр, рулетка и другие. С развитием науки совершенствуются, усложняются и появляются новые приборы: вольтметры, термометры, секундомеры и другие.

В основном приборы имеют шкалу, то есть штриховые деления, на которых написаны значения. Перед измерением определяют цену деления:

  • берут два штриха шкалы со значениями;
  • из большего вычитают меньшее, а полученное число делят на число делений, которые находятся между.

Например, два штриха со значениями "двадцать" и "тридцать", расстояние между которыми разделено на десять промежутков. В этом случае цена деления будет равна единице.

Точные измерения и с погрешностью

Измерения выполняются более или менее точно. Допускаемая неточность называется погрешностью. При измерении она не может быть больше цены деления прибора для измерений.

Точность зависит от цены деления и правильного использования прибора. Но в итоге в любом измерении получаются только приблизительные значения.

Теоретическая и экспериментальная физика

Это главные ветви науки. Может казаться, что они очень далеки друг от друга, тем более что большинство людей являются или теоретиками, или экспериментаторами. Однако они развиваются постоянно бок о бок. Любую проблему рассматривают и теоретики, и экспериментаторы. Делом первых является описание данных и выведение гипотез, а вторые проверяют теории на практике, проводя эксперименты и получая новые данные. Иногда достижения вызываются лишь экспериментами, без описываемых теорий. В других случаях, наоборот, удается получить результаты, которые проверяются позже.

Квантовая физика

Это направление зародилось в конце 1900 года, когда была открыта новая физическая фундаментальная константа, получившая название постоянной Планка в честь немецкого физика, ее открывшего, - Макса Планка. Он решил проблему спектрального распределения света, который излучают нагретые тела, в то время как классическая общая физика этого сделать не смогла. Планк высказал гипотезу о квантовой энергии осциллятора, которая была несовместима с классической физикой. Благодаря ей многие физики стали пересматривать старые понятия, изменять их, в результате чего возникла квантовая физика. Это совершенно новое представление о мире.

и сознание

Феномен человеческого сознания с точки зрения не является совсем новым. Основа его была заложена еще Юнгом и Паули. Но лишь сейчас, со становлением этого нового направления науки, феномен стал рассматриваться и изучаться более масштабно.

Квантовый мир многолик и многомерен, в нем есть множество классических лиц и проекций.

Двумя основными свойствами в рамках предложенной концепции являются сверхинтуиция (то есть получение как бы ниоткуда информации) и управление субъективной реальностью. В обычном сознании человек может видеть лишь одну картину мира и не способен рассмотреть две сразу. Тогда как в реальности существует их огромное количество. Все это в совокупности и есть квантовый мир и свет.

Это физика квантовая учит видеть новую для человека реальность (хотя многие восточные религии, а также маги давно владеют такой техникой). Необходимо лишь поменять человеческое сознание. Теперь человек неотделим от всего мира, но во внимание принимаются интересы всего живого и сущего.

Именно тогда, погружаясь в состояние, где он способен увидеть все альтернативы, ему приходит озарение, являющееся абсолютной истиной.

Принцип жизни с точки зрения квантовой физики заключается для человека в том, чтобы он, помимо всего прочего, внес свой вклад в лучшее мироустройство.

Физика - самая загадочная из всех наук. Физика дает нам понимание окружающего мира. Законы физики абсолютны и действуют на всех без исключения, не взирая на лица и социальный статус.

Данная статья предназначена для лиц старше 18 лет

А вам уже исполнилось 18?

Фундаментальные открытия в области квантовой физики

Исаак Ньютон, Никола Тесла, Альберт Эйнштейн и многие другие — великие проводники человечества в удивительном мире физики, которые подобно пророкам открыли человечеству величайшие тайны мироздания и возможности управления физическими явлениями. Их светлые головы рассекли тьму невежества неразумного большинства и подобно путеводной звезде указали путь человечеству во мраке ночи. Одним из таких проводников в мире физики стал Макс Планк — отец квантовой физики.

Макс Планк не только основоположник квантовой физики, но и автор всемирно известной квантовой теории. Квантовая теория — важнейшая составляющая квантовой физики. Простыми словами, данная теория описывает движение, поведение и взаимодействие микрочастиц. Основатель квантовой физики также принес нам и множество других научных трудов, которые стали краеугольными камнями современной физики:

  • теория теплового излучения;
  • специальная теория относительности;
  • исследования в области термодинамики;
  • исследования в области оптики.

Теория квантовой физики о поведении и взаимодействии микрочастиц стала основой для физики конденсированного состояния, физики элементарных частиц и физики высоких энергий. Квантовая теория объясняет нам суть множества явлений нашего мира — от функционирования электронных вычислительных машин до строения и поведения небесных тел. Макс Планк, создатель данной теории, благодаря своему открытию позволил нам постигнуть истинную суть многих вещей на уровне элементарных частиц. Но создание данной теории — далеко не единственная заслуга ученого. Он стал первым, кто открыл фундаментальный закон Вселенной — закон сохранения энергии. Вклад в науку Макса Планка сложно переоценить. Если говорить кратко, то его открытия бесценны для физики, химии, истории, методологии и философии.

Квантовая теория поля

В двух словах, квантовая теория поля — это теория описания микрочастиц, а также их поведения в пространстве, взаимодействия между собой и взаимопревращения. Данная теория изучает поведение квантовых систем в рамках, так называемых степеней свободы. Это красивое и романтичное название многим из нас толком ничего не говорит. Для чайников, степени свободы — это количество независимых координат, которые необходимы для обозначения движения механической системы. Простыми словами, степени свободы — это характеристики движения. Интересные открытия в области взаимодействия элементарных частиц совершил Стивен Вайнберг. Он открыл так называемый нейтральный ток — принцип взаимодействия между кварками и лептонами, за что и получил Нобелевскую премию в 1979-ом году.

Квантовая теория Макса Планка

В девяностых годах восемнадцатого века немецкий физик Макс Планк занялся изучением теплового излучения и в итоге получил формулу для распределения энергии. Квантовая гипотеза, которая родилась в ходе данных исследований, положила начало квантовой физике, а также квантовой теории поля, открытой в 1900-ом году. Квантовая теория Планка заключается в том, что при тепловом излучении продуцируемая энергия исходит и поглощается не постоянно, а эпизодически, квантово. 1900-ый год, благодаря данному открытию, которое совершил Макс Планк, стал годом рождения квантовой механики. Также стоит упомянуть о формуле Планка. Если говорить кратко, то ее суть следующая — она основана на соотношении температуры тела и его излучения.

Квантово-механическая теория строения атома

Квантово-механическая теория строения атома является одной из базовых теорий понятий в квантовой физике, да и в физике вообще. Данная теория позволяет нам понять строение всего материального и открывает завесу тайны над тем, из чего же на самом деле состоят вещи. А выводы, исходя из данной теории, получаются весьма неожиданные. Рассмотрим строение атома кратко. Итак, из чего же на самом деле состоит атом? Атом состоит из ядра и облака электронов. Основа атома, его ядро, содержит в себе почти всю массу самого атома — более 99 процентов. Ядро всегда имеет положительный заряд, и он определяет химический элемент, частью которого является атом. Самым интересным в ядре атома является то, что он содержит в себе практически всю массу атома, но при этом занимает лишь одну десятитысячную его объема. Что же из этого следует? А вывод напрашивается весьма неожиданный. Это значит, что плотного вещества в атоме — всего лишь одна десятитысячная. А что же занимает все остальное? А все остальное в атоме — электронное облако.

Электронное облако — это не постоянная и даже, по сути, не материальная субстанция. Электронное облако — это лишь вероятность появления электронов в атоме. То есть ядро занимает в атоме лишь одну десятитысячную, а все остальное — пустота. И если учесть, что все окружающие нас предметы, начиная от пылинок и заканчивая небесными телами, планетами и звездами, состоят из атомов, то получается, что все материальное на самом деле более чем на 99 процентов состоит из пустоты. Эта теория кажется вовсе невероятной, а ее автор, как минимум, заблуждающимся человеком, ведь вещи, существующие вокруг, имеют твердую консистенцию, имеют вес и их можно осязать. Как же он могут состоять из пустоты? Не закралась ли ошибка в эту теорию строения вещества? Но ошибки тут никакой нет.

Все материальные вещи кажутся плотными лишь за счет взаимодействия между атомами. Вещи имеют твердую и плотную консистенцию лишь за счет притяжения или же отталкивания между атомами. Это и обеспечивает плотность и твердость кристаллической решетки химических веществ, из которых и состоит все материальное. Но, интересный момент, при изменении, например, температурных условий окружающей среды, связи между атомами, то есть их притяжение и отталкивание может слабеть, что приводит к ослаблению кристаллической решетки и даже к ее разрушению. Именно этим объясняется изменение физических свойств веществ при нагревании. Например, при нагревании железа оно становится жидким и ему можно придать любую форму. А при таянии льда, разрушение кристаллической решетки приводит к изменению состояния вещества, и из твердого оно превращается в жидкое. Это яркие примеры ослабления связей между атомами и, как следствие, ослабления или разрушения кристаллической решетки, и позволяют веществу стать аморфным. А причина таких загадочных метаморфоз как раз в том, что вещества лишь на одну десятитысячную состоят из плотной материи, а все остальное — пустота.

И вещества кажутся твердыми лишь по причине прочных связей между атомами, при ослаблении которых, вещество видоизменяется. Таким образом, квантовая теория строения атома позволяет совершенно по-другому взглянуть на окружающий мир.

Основатель теории атома,Нильс Бор, выдвинул интересную концепцию о том, что электроны в атоме не излучают энергию постоянно, а лишь в момент перехода между траекториями своего движения. Теория Бора помогла объяснить многие внутриатомные процессы, а также сделала прорыв в области такой науки, как химия, объясняя границу таблицы, созданной Менделеевым. Согласно , последний элемент, способный существовать во времени и пространстве, имеет порядковый номер сто тридцать семь, а элементы, начиная со сто тридцать восьмого, существовать не могут, так как их существование противоречит теории относительности. Также, теория Бора объяснила природу такого физического явления, как атомные спектры.

Это спектры взаимодействия свободных атомов, возникающие при излучении энергии между ними. Такие явления характерны для газообразных, парообразных веществ и веществ в состоянии плазмы. Таким образом, квантовая теория сделала революцию в мире физики и позволила продвинуться ученым не только в сфере этой науки, но и в сфере многих смежных наук: химии, термодинамики, оптики и философии. А также позволила человечеству проникнуть в тайны природы вещей.

Еще очень многое надлежит перевернуть человечеству в своем сознании, чтобы осознать природу атомов, понять принципы их поведения и взаимодействия. Поняв это, мы сможем понять и природу окружающего нас мира, ведь все, что нас окружает, начиная с пылинок и заканчивая самим солнцем, да и мы сами — все состоит из атомов, природа которых загадочна и удивительна и таит в себе еще массу тайн.

Квантовая физика - наиболее обсуждаемый и скандальный раздел науки. По сути, это одно из самых эффективных и точных открытий теоретической области знания. Законы квантовой физики, будучи примененными для расчета эксперимента, показывают ничтожные отклонения результатов - порядка миллионных долей процента. На каком же утверждении основана квантовая физика?

Физика микромира, изучающая поведение атомов и процессы, происходящие при их взаимодействии, предусматривает механическую модель. То есть, атом условно можно представить в категориях, понятных каждому человеку. Законы квантовой физики, напротив, представляют атом в виде элементарной частицы, имеющей свойства материальной точки и волны излучения одновременно.

Основная теория, на которой базируется квантовая физика, гласит:

Энергия в любом виде поглощается или выделяется только отдельными порциями. Они, в свою очередь, могут состоять только из целого числа условных объектов, названных квантами. Энергия одного кванта определяется как произведение частоты на некий коэффициент пропорциональности. Этот коэффициент, позже названный «постоянная Планка», был впервые введен Максом Планком и прозвучал в его докладе 14 декабря 1900 года. Именно этот день стал датой рождения теории квантов и положил начало процессу, который зародил законы квантовой физики. Начальное понимание принципов квантовой физики, а именно - основного правила двойственности свойств любого объекта (корпускулярно - волновой дуализм) привело к открытию фотонов. Пытаясь объяснить механику фотоэффекта различных материалов, Альберт Энштейн выдвинул теорию, что свет состоит из отдельных квантов. Формулы, описывающие энергию, импульс и массу фотонов - относятся к базовым законам, описывающим квантовую природу не только света, но и любого другого высокочастотного излучения.

Виды фундаментальных взаимодействий

Многие основополагающие концепции современного естествознания прямо или косвенно связаны с описанием фундаментальных взаимодействий. Взаимодействие и движение – важнейшие атрибуты материи, без которых невозможно ее существование. Взаимодействие обусловливает объединение различных материальных объектов в системы, т. е. системную организацию материи. Многие свойства материальных объектов производны от их взаимодействия, являются результатом их структурных связей между собой и взаимодействий с внешней средой.

К настоящему времени известны четыре вида основных фундаментальных взаимодействий:

· гравитационное;

· электромагнитное;

· сильное;

· слабое.

Гравитационное взаимодействие характерно для всех материальных объектов вне зависимости от их природы. Оно заключается во взаимном притяжении тел и определяется фундаментальнымзаконом всемирного тяготения: между двумя точечными телами действует сила притяжения, прямо пропорциональная произведению их масс и обратно пропорциональная квадрату расстояния между ними . гравитонами , существование которых к настоящему времени экспериментально не подтверждено.

Электромагнитное взаимодействие связано с электрическими и магнитными полями. Электрическое поле возникает при наличии электрических зарядов, а магнитное поле – при их движении. В природе существуют как положительные, так и отрицательные заряды, что и определяет характер электромагнитного взаимодействия. Например, электростатическое взаимодействие между заряженными телами в зависимости от знака заряда сводится либо к притяжению, либо к отталкиванию. При движении зарядов в зависимости от их знака и направления движения между ними возникает либо притяжение, либо отталкивание. Различные агрегатные состояния вещества, явление трения, упругие и другие свойства вещества определяются преимущественно силами межмолекулярного взаимодействия, которое по своей природе является электростатическим.

Сильное взаимодействие обеспечивает связь нуклонов в ядре и определяет ядерные силы. Предполагается, что ядерные силы возникают при обмене между нуклонами виртуальными частицами – мезонами .

Наконец, слабое взаимодействие описывает некоторые виды ядерных процессов. Оно короткодействующее и характеризует все виды бета-превращений.

Обычно для количественного анализа перечисленных взаимодействий используют две характеристики: безразмерную константу взаимодействия, определяющую величину взаимодействия, и радиус действия.

Сильное взаимодействие отвечает за устойчивость ядер и распространяется только в пределах размеров ядра. Чем сильнее взаимодействуют нуклоны в ядре, тем оно устойчивее, тем больше его энергия связи, определяемая работой, которую необходимо совершить, чтобы разделить нуклоны и удалить их друг от друга на такие расстояния, при которых взаимодействие становится равным нулю. С возрастанием размера ядра энергия связи уменьшается. Так, ядра элементов, находящихся в конце таблицы Менделеева, неустойчивы и могут распадаться. Такой процесс часто называется радиоактивным распадом .

Взаимодействие между атомами и молекулами имеет преимущественно электромагнитную природу. Таким взаимодействием объясняется образование различных агрегатных состояний вещества: твердого, жидкого и газообразного. Например, между молекулами вещества в твердом состоянии взаимодействие в виде притяжения проявляется гораздо сильнее, чем между теми же молекулами в газообразном состоянии.

11. Термодинамический уровень описания материи. Начала термодинамики. Энтропия. Гипотеза «тепловой смерти» Вселенной.

Ответ: В основе термодинамического подхода – три начала и несколько постулатов, опирающихся на опытные факты (закон сохранения энергии, закон возрастания энтропии, закон о недостижимости абсолютного нуля, постулат о существовании термодинамического равновесия). В термодинамике не обсуждаются микроскопическая природа законов или начал, на этом уровне все сводится к том или иному описанию явления (именно поэтому этот подход называют феноменологическим), в этом слабость этого подхода (если не знать корней того или иного закона, нельзя априори сказать, когда он будет оставаться справедливым), но в этом и его сила (существуют эмпирические формулы и уравнения, которые до сих пор не могут получить теоретически, однако они с успехом используются на практике). Начала термодинамики:

Первое начало термодинамики - закон сохранения и превращения энергии при тепловых процессах: энергия, поступающая в систему, идет на увеличение внутренней энергии системы и на совершение ею работы. Невозможность вечного двигателя первого рода.

Рассматривая Вселенную как замкнутую систему и применяя к ней воторое начало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, то есть наступит полное тепловое равновесие и все процессы во Вселенной прекратятся – наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.

Системный подход в современном естествознании. Основные понятия и идеи синергетики.

Ответ: Особенностью современного естествознания является осознанное внедрение идей системности во все его отрасли. Системность реализуется в рамках системного подхода, т.е. исследований, в основе которых лежит изучение объектов как сложных систем.Под системным подходом в широком смысле понимают метод исследования оружающего мира, при котором интересующие нас предметы и явления рассматриваются как части или элементы определенного целостного образования. Эти части и элементы, взаимодействуя друг с другом, формируют новые свойства целостного образования (системы), отсутствующие у каждого из них в отдельности. Таким образом, мир с точки зрения системного подхода предстает перед нами как совокупность систем разного уровня, находящихся в отношениях иерархии. В современной науке в основе представлений о строении материального мира лежит именно системный подход, согласно которому любой объект материального мира может быть рассмотрен как сложное образование, включающее составные части, организованные в целое. Для обозначения этой целостности в науке выработано понятие системы. Система занимает центральное место в системном подходе. Поэтому разные авторы, анализируя это понятие, дают определения системы с различной степенью формализации, подчеркивая разные ее стороны.Определим систему как совокупность элементов, находящихся в отношениях и связях друг с другом и образующих некую целостность.

Системам независимо от их природы присущ ряд свойств:

1. Целостность - принципиальная несводимость свойств составляющих ее элементов и невыводимость из последних свойств целого, а также зависимость каждого элемента, свойства и отношения системы от его места внутри целого, функции и т.д. Например, ни одна деталь часов отдельно не может показать время, это способна сделать лишь система взаимодействующих элементов;

2. Структурность - возможность описания системы через установление ее структуры или, проще говоря, сети связей и отношений системы. Структурность также подразумевает обусловленность свойств и поведения системы не столько свойствами и поведением ее отдельных элементов, сколько свойствами ее структуры. Простейший пример: разные свойства алмаза и графита определяются различной структурой при одинаковом химическом составе;

3. Иерархичность систем, т.е. каждый компонент системы в свою очередь может рассматриваться как система, а исследуемая в конкретном случае система представляет собой один из компонентов более широкой системы. Например, живая клетка многоклеточного организма является, с одной стороны, частью более общей системы - многоклеточного организма, а с другой - сама имеет сложное строение и, безусловно, должна быть признана сложной системой;

4. Множественность описания системы, т.е. в силу принципиальной сложности каждой системы ее познание требует построения множества различных моделей, каждая из которых описывает лишь определенный аспект системы. Например, любое животное имеет части тела, которые могут рассматриваться как его элементы; это животное можно рассмотреть как совокупность скелета, нервной, кровеносной, мышечной и других систем; наконец, его можно проанализировать как совокупность химических элементов.

Термин "синергетика" введен Г. Хакеном для обозначения междисциплинарного направления, в котором, как он и предполагал, результаты его исследований по теории лазеров и неравновесным фазовым переходам смогли дать идейную основу для плодотворного взаимному сотрудничества исследователей из различных областей знания. Синергетика Г. Хакена в нестрогом смысле базируется на ранее выдвинутых теориях, например: Чарлз Скотт Шеррингтон (1857-1952), называвший синергетическим согласованное действие нервной системы при управлении мышечнымидвижениями; Станислав Улам (1909-1984), говоривший о синергии, в форме непрерывного сотрудничества междукомпьютероми оператором и др. Однако притом, что имеетсянеформальнаясвязь явлений, названных "синергетика", по существу содержания предшественники Г. Хакена говорили лишь о частных примерах.

Автором самого термина является Ричард Бакминстер Фуллер (1895-1983) - известный дизайнер, архитектор и изобретатель из США. В течение своей жизни Р.Б. Фуллер задавался вопросом относительно того, есть ли у человечества шанс на долгосрочное и успешное выживание на планетеЗемляи, если да, то каким образом. Считая себя заурядным индивидом без особых денежных средств или учёной степени, он решил посвятить своюжизньэтому вопросу, пытаясь выяснить, что личности вроде него могут сделать для улучшения положения человечества из того, что большие организации, правительства или частные предприятия не могут выполнить в силу своей природы. На протяжении этого эксперимента всей жизни он написал двадцать восемь книг, выработав такиетерминыкак "космический корабль “Земля”", "эфемеризация" и "синергетика".

Практически изначально (от Г. Хакена) синергетика нашла содержание для себя и привнесла новые идеи: в теорию лазеров и термодинамику неравновесных процессов, и теорию нелинейных колебаний и автоволновых процессов; в теорию бифуркации и теорию структурной устойчивости; в теорию катастроф. Претерпело развитиепонятия хаоса, вошел в обиход термин "детерминированный хаос", имеющий конкретный физико-математический смысл. Значительно расширилась область применения синергетики в связи сразвитиемтеориифракталов. 1 В русле синергетики нашлиинтерпретацию и свое решение задачи из областей физики, кинетической химии, биологии, геологии, материаловедения, экономики и др. Следует отметить распространение самим Г. Хакеном идей синергетики на биологические явления: переходы между паттернами (шаблоны, модели, принципы) в биологии и возможности исследования биологической эволюции как процесса самоорганизации в сложной системе. В контексте синергетики проводятся сегодня социальные и гуманитарные исследования.

С мировоззренческой точки зрения синергетику иногда преподносят, как "глобальный эволюционизм" или "универсальную теорию эволюции", дающую единую основу для описания механизмов возникновения любых новаций подобно тому, как некогда кибернетика определялась, как "универсальная теория управления", одинаково пригодная для описания любых операций регулирования и оптимизации: в природе, в технике, в обществе и т.д. и т.п. Однако время показало, что всеобщий кибернетический подход оправдал далеко не все возлагавшиеся на него надежды.


Похожая информация.


mob_info