Примеры веществ с разными кристаллическими решетками. Типы кристаллических решеток

Одним из самых распространенных материалов, с которым всегда предпочитали работать люди, был металл. В каждую эпоху предпочтение отдавалось разным видам этих удивительных веществ. Так, IV-III тысячелетия до нашей эры считаются веком хальколита, или медным. Позже его сменяет бронзовый, а затем в силу вступает тот, что и по сей день является актуальным - железный.

Сегодня вообще сложно представить, что когда-то можно было обходиться без металлических изделий, ведь практически все, начиная от предметов быта, медицинских инструментов и заканчивая тяжелой и легкой техникой, состоит из этого материала или включает в свой состав отдельные части из него. Почему же металлы сумели завоевать такую популярность? В чем проявляются особенности и как это заложено в их строении, попробуем разобраться далее.

Общее понятие о металлах

"Химия. 9 класс" - это учебник, по которому проходят обучение школьники. Именно в нем подробно изучаются металлы. Рассмотрению их физических и химических свойств отведена большая глава, ведь разнообразие их чрезвычайно велико.

Именно с этого возраста рекомендуют давать детям представление о данных атомах и их свойствах, ведь подростки уже вполне могут оценить значение подобных знаний. Они прекрасно видят, что окружающее их разнообразие предметов, машин и прочих вещей имеет в своей основе как раз металлическую природу.

Что же такое металл? С точки зрения химии, к данным атомам принято относить те, что имеют:

  • малое на внешнем уровне;
  • проявляют сильные восстановительные свойства;
  • имеют большой атомный радиус;
  • как простые вещества обладают рядом специфических физических свойств.

Основу знаний об этих веществах можно получить, если рассмотреть атомно-кристаллическое строение металлов. Именно оно объясняет все особенности и свойства данных соединений.

В периодической системе для металлов отводится большая часть всей таблицы, ведь они образуют все побочные подгруппы и главные с первой по третью группу. Поэтому их численное превосходство очевидно. Самыми распространенными являются:

  • кальций;
  • натрий;
  • титан;
  • железо;
  • магний;
  • алюминий;
  • калий.

Все металлы имеют ряд свойств, которые позволяют объединять их в одну большую группу веществ. В свою очередь, эти свойства объясняет именно кристаллическое строение металлов.

Свойства металлов

К специфическим свойствам рассматриваемых веществ относят следующие.

  1. Металлический блеск. Все представители простых веществ им обладают, причем большинство одинаковым Лишь некоторые (золото, медь, сплавы) отличаются.
  2. Ковкость и пластичность - способность деформироваться и восстанавливаться достаточно легко. У разных представителей выражена в неодинаковой мере.
  3. Электропроводность и теплопроводность - одно из основных свойств, которое определяет области применения металла и его сплавов.

Кристаллическое строение металлов и сплавов объясняет причину каждого из обозначенных свойств и говорит о выраженности их у каждого конкретного представителя. Если знать особенности такого строения, то можно влиять на свойства образца и подстраивать его под нужные параметры, что и делают люди уже многие десятилетия.

Атомно-кристаллическое строение металлов

В чем же заключается такое строение, чем характеризуется? Само название говорит о том, что все металлы представляют собой кристаллы в твердом состоянии, то есть при обычных условиях (кроме ртути, которая является жидкостью). А что такое кристалл?

Это условное графическое изображение, построенное путем пересечения воображаемых линий через атомы, которые выстраивают тело. Другими словами, каждый металл состоит из атомов. Они располагаются в нем не хаотично, а очень правильно и последовательно. Так вот, если мысленно соединить все эти частицы в одну структуру, то получится красивое изображение в виде правильного геометрического тела какой-либо формы.

Это и принято называть кристаллической решеткой металла. Она очень сложная и пространственно объемная, поэтому для упрощения показывают не всю ее, а лишь часть, элементарную ячейку. Совокупность таких ячеек, собранная вместе и отраженная в и образует кристаллические решетки. Химия, физика и металловедение - это науки, которые занимаются изучением особенностей строения таких структур.

Сама - это набор атомов, которые располагаются на определенном расстоянии друг от друга и координируют вокруг себя строго фиксированное число других частиц. Она характеризуется плотностью упаковки, расстоянием между составными структурами, координационным числом. В целом все эти параметры являются характеристикой и всего кристалла, а значит, отражают и проявляемые металлом свойства.

Существует несколько разновидностей Объединяет их все одна особенность - в узлах находятся атомы, а внутри располагается облако электронного газа, которое формируется путем свободного передвижения электронов внутри кристалла.

Типы кристаллических решеток

Четырнадцать вариантов строения решетки принято объединять в три основных типа. Они следующие:

  1. Объемно-центрированная кубическая.
  2. Гексагональная плотноупакованная.
  3. Гранецентрированная кубическая.

Кристаллическое строение металлов было изучено только благодаря когда стало возможным получать большие увеличения изображений. А классификацию типов решеток впервые привел французский ученый Браве, по фамилии которого их иногда называют.

Объемно-центрированная решетка

Строение кристаллической решетки металлов данного типа представляет собой следующую структуру. Это куб, в узлах которого находится восемь атомов. Еще один располагается в центре свободного внутреннего пространства ячейки, что и объясняет название "объемно-центрированная".

Это один из вариантов наиболее простого строения элементарной ячейки, а значит, и всей решетки в целом. Такой тип имеют следующие металлы:

  • молибден;
  • ванадий;
  • хром;
  • марганец;
  • альфа-железо;
  • бетта-железо и другие.

Основные свойства таких представителей - высокая степень ковкости и пластичности, твердость и прочность.

Гранецентрированная решетка

Кристаллическое строение металлов, имеющих гранецентрированную кубическую решетку, представляет собой следующую структуру. Это куб, который включает в свой состав четырнадцать атомов. Восемь из них формируют узлы решетки, а еще шесть расположены по одному на каждой грани.

Подобную структуру имеют:

  • алюминий;
  • никель;
  • свинец;
  • гамма-железо;
  • медь.

Основные отличительные свойства - блеск разного цвета, легкость, прочность, ковкость, повышенная устойчивость к коррозии.

Гексагональная решетка

Кристаллическое строение металлов, обладающих решетки, следующее. В основе элементарной ячейки лежит шестигранная призма. В ее узлах располагается 12 атомов, еще два по основаниям и три атома свободно лежат внутри пространства в центре структуры. Всего семнадцать атомов.

Подобную сложную конфигурацию имеют такие металлы, как:

  • альфа-титан;
  • магний;
  • альфа-кобальт;
  • цинк.

Основные свойства - высокая степень прочности, сильный серебристый блеск.

Дефекты кристаллического строения металлов

Однако все рассмотренные типы ячеек могут иметь и естественные недостатки, или так называемые дефекты. Это может быть связано с разными причинами: посторонними атомами и примесями в металлах, внешними воздействиями и прочим.

Поэтому существует классификация, отражающая дефекты, которые могут иметь кристаллические решетки. Химия как наука изучает каждый из них с целью выявления причины и способа устранения, чтобы свойства материала не были изменены. Итак, дефекты следующие.

  1. Точечные. Они бывают трех основных видов: вакансии, примеси или дислоцированные атомы. Приводят к ухудшению магнитных свойств металла, электро- и теплопроводности его.
  2. Линейные, или дислокационные. Выделяют краевые и винтовые. Ухудшают прочность и качество материала.
  3. Поверхностные дефекты. Влияют на внешний вид и структуру металлов.

В настоящее время разработаны методики устранения дефектов и получения чистых кристаллов. Однако совсем искоренить их не удается, идеальной кристаллической решетки не существует.

Значение знаний о кристаллическом строении металлов

Из вышеизложенного материала очевидно, что знания о тонкой структуре и строении позволяют спрогнозировать свойства материала и повлиять на них. И это позволяет делать наука химия. 9 класс общеобразовательной школы делает в процессе обучения упор на то, чтобы сформировать у учащихся четкое понятие о важном значении основополагающей логической цепочки: состав - строение - свойства - применение.

Сведения о кристаллическом строении металлов очень четко иллюстрирует и позволяет учителю наглядно объяснить и показать детям, насколько важно знать тонкую структуру, чтобы правильно и грамотно использовать все свойства.

Образование молекул из атомов приводит к выигрышу энергии, так как в обычных условиях молекулярное состояние устойчивее, чем атомное.

Чтобы рассматривать данную тему необходимо знать:

Электроотрицательность - это способность атома смещать к себе общую электронную пару. (Самый электроотрицательный элемент - фтор.)

Кристаллическая решетка - трехмерное упорядоченное расположение частиц.

Различают три основных типа химических связей: ковалентную, ионную и металлическую.

Металлическая связь характерна для металлов, которые содержат небольшое количество электронов на внешнем энергетическом уровне (1 или 2, реже 3). Эти электроны легко теряют связь с ядром и свободно перемещаются по всему куску металла, образуя "электронное облако" и обеспечивая связь с положительно заряженными ионами, образовавшимися после отрыва электронов. Кристаллическая решетка - металлическая. Это обуславливает физические свойства металлов: высокую тепло- и электропроводность, ковкость и пластичность, металлический блеск.

Ковалентная связь образуется за счет общей электронной пары атомов неметаллов, при этом каждый из них достигает устойчивой конфигурации атома инертного элемента.

Если связь образуют атомы с одинаковой электроотрицательностью, то есть разница электроотрицательности двух атомов равна нулю, электронная пара располагается симметрично между двумя атомами и связь называется ковалентной неполярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов лежит в интервале от нуля примерно до двух (чаще всего это разные неметаллы), то общая электронная пара смещается к более электроотрицательному элементу. На нем возникает частично отрицательный заряд (отрицательный полюс молекулы), а на другом атоме - частично положительный заряд (положительный полюс молекулы). Такая связь называется ковалентной полярной.

Если связь образуют атомы с разной электроотрицательностью, причем разница в электроотрицательности двух атомов больше двух (чаще всего это неметалл и металл), то считают, что электрон полностью переходит к атому неметалла. В результате этот атом становится отрицательно заряженным ионом. Атом, отдавший электрон, - положительно заряженным ионом. Связь между ионами называется ионной связью.

Соединения с ковалентной связью имеют два типа кристаллических решеток: атомные и молекулярные.

В атомной кристаллической решетке в узлах находятся атомы, соединенные прочной ковалентной связью. Вещества с такой кристаллической решеткой имеют высокие температуры плавления, прочны и тверды, практически нерастворимы в жидкостях. например, алмаз, твердый бор, кремний, германий и соединения некоторых элементов с углеродом и кремнием.

В молекулярной кристаллической решетке в узлах находятся молекулы, соединенные слабым межмолекулярным взаимодействием. Вещества с такой решеткой имеют малую твердость и низкие температуры плавления, нерастворимы или малорастворимы в воде, из растворы практически не проводят электрический ток. Например, лед, твердый оксид углерода (IV) твердые галогеноводороды, твердые простые вещества, образованные одно-(благородные газы), двух- (F 2 , Cl 2 , Br 2 , I 2 , H 2 , O 2 , N 2), трех-(О 3), четырех- (Р 4), восьми- (S 8) атомными молекулами. Большинство кристаллических органических соединений имеют молекулярную решетку.

Соединения с ионной связью имеют ионную кристаллическую решетку, в узлах которой чередуются положительно и отрицательно заряженные ионы. Вещества с ионной решеткой тугоплавки и малолетучи, имеют сравнительно высокую твердость, но хрупки. Расплавы и водные растворы солей и щелочей проводят электрический ток.

Примеры заданий

1. В какой молекуле ковалентная связь "элемент - кислород" наиболее полярна?

1) SO 2 2) NO 3) Cl 2 O 4) H 2 O

Решение:

Полярность связи определяется разностью электроотрицательности двух атомов (в данном случае элемента и кислорода). Сера, азот и хлор находятся рядом с кислородом, следовательно их электроотрицательности отличаются незначительно. И только водород находится на отдалении от кислорода, значит разница в электроотрицательности будет большая, и связь будет наиболее полярна.

Ответ: 4)

2. Водородные связи образуются между молекулами

1) метанола 2) метаналь 3) ацетилена 4) метилформиата

Решение:

В составе ацетилена вообще нет сильноэлектроотрицательных элементов. Метаналь Н 2 СО и метилформиат НСООСН 3 не содержат водорода, соединенного с сильноэлектроотрицательным элементом. Водород в них соединен с углеродом. А вот в метаноле СН 3 ОН между атомом водорода одной гидроксогруппы и атомом кислорода другой молекулы возможно образование водородной связи.

Ответ: 1)

Кристаллическая решетка – система точек, расположенных в равных, параллельно ориентированных вершинах и смежных по граням параллелепипедов без промежутков, заполняющих пространство точек, называющимися узлами, прямые - рядами, плоскости - сетками, параллелепипеды называются элементарными ячейками.

Типы кристаллических решеток: атомная – если в узлах расположены атомы, ионная – если в узлах расположены ионы, молекулярная - если в узлах расположены молекулы

2.Свойства кристаллических веществ - однородность, анизотропность, способность самоограняться.

Однородность - два одинаковых элементарных объема вещества параллельно ориентированых в пространстве, но выделены в разных точках вещества, абсолютно одинаковы по свойствам (берилл - турмалин).

Анизотропность - в разных направлениях кристаллической решетки в непараллельных направлениях многие свойства (н-р, прочность, твердость, показатель преломления) различны.

Способность самоограняться – свойство кристаллов при свободном росте образовывать правильно ограненные многогранники.

Свойство постоянства двугранных узлов – углы м/у соответствующимигранями и ребрами во всех кристаллах одного и того же вещества одинаковы.

3.Понятие сингонии. На какие категории подразделяются сингонии.

Сингония – совокупность видов симметрий, имеющая 1 или или несколько общих элементов симметрии, при равном числе единичных направлений. С. к. характеризуется соотношениями между осями а, b, с и углами ячейки.

Существует 7 Делятся на:

Низшую( не имеют осей симметрии выше второго порядка)

Среднюю (они имеют одну ось симметрии высшего порядка)

Единичные направления – направления, неповторяющиеся в кристаллах.

Являясь наиболее крупным классификационным подразделением в симметрии кристаллов, каждая С. к. включает в себя несколько точечных групп симметрий и Браве решёток.

4.Простые формы и комбинации. Физический смысл выделения простых форм в кристалле.

По внешнему виду кристаллы делятся на простые формы и комбинации. Простые формы – кристаллы полученные из одной грани путем действия на нее элемента симметрии.

Элементы симметрии:

    геометрический образ

    плоскость симметрии – плоскость перпендикулярная изображению, разделяющая фигуру на 2 части, соотносящиеся как предмет и его зеркальное отражение.

    Ось симметрии – это прямая, перпендикулярная изображению, при повороте вокруг которой на 360 о фигура совмещается сама с собой n раз.

    Центр симметрии – точка внутри кристалла характеризующаяся тем, что каждая проводимая через нее прямая встречается с двух сторон на одинаковом расстояниях идентичные точки.

Комбинации - кристаллы, состоящие из граней, различного типа, отличающихся по форме и размеру. Образуются сочетанием двух или более простых форм. Сколько на равномерно развитом кристалле типов граней столько в нем и простых форм.

Выделение граней разного типа имеет физический смысл , поскольку разные грани растут с различной скоростью и имеют разные свойства (твердость, плотность, показатель преломления).

Простые формы бывают открытые и закрытые. Закрытая простая форма с помощью граней одного типа самостоятельно замыкает пространство (тетрагональная дипирамида), открытая простая форма может замыкать пространство только в сочетании с другими простыми формами (тетрагональная пирамида+плоскость.) Всего существует 47 простых форм. Все они подразделяются по категриям:

Моноэдр - простая форма, представленная одной гранью.

Пинакоид - две равные параллельные грани, которые могут быть обратно расположенными.

Диэдр - две равные пересекающиеся грани (могут пересекаться на своём продолжении) .

Ромбическая призма - четыре равных попарно параллельных грани; в сечении образуют ромб.

Ромбическая пирамида четыре равные пересекающиеся грани; в сечении также образуют ромб. Перечисленные простые формы относятся к открытым, так как они не замыкают пространства. Присутствие в кристалле открытых простых форм, например, ромбической призмы обязательно вызывает присутствие других простых форм, например, пинакоида или ромбической дипирамиды, необходимых для того, чтобы получилась замкнутая форма.

Из закрытых простых форм низших сингоний отметим следующие. Ромбическая дипирамида две ромбические пирамиды, сложенные основаниями; форма имеет восемь разных граней, дающих в поперечном сечении ромб; Ромбический тетраэдр четыре грани, замыкающие пространство и имеющие форму косоугольных треугольников.

    Средняя категория (сингонии: триклинная, тетрагональная, гексагональная)– 27 п.ф.: моноэдр, пинокоид, 6 дипирамид, 6 пирамид, 6 призм, тетраэдр, ромбоэдр, 3 трапециэдра (грани в форме трапеции), 2 скаленоидра (образуются путем удвоения граней тетраэдра и ромбоэдра).

    Высшая категория – 15 п.ф.: основными являются тетраэдр, октаэдр, куб. Если вместо одной грани появляются 3 грани – тритетраэдр, если 6 – гексатетраэдр, если 4 – тетратетраэдр. Грани могут быть 3х, 4х, 5тиугольные: 3х – тригон, 4х – тетрагон, 5ти – пентагон.

Простой формой кристалла называют семейство граней, взаимосвязанных симметрическими операциями данного класса симметрии. Все грани, образующие одну простую форму кристалла, должны быть равны по размеру и форме. В кристалле могут присутствовать одна или несколько простых форм. Сочетание нескольких простых форм называется комбинацией.

Закрытыми называют такие формы, грани которых полностью замыкают заключенное между ними пространство, как, например, куб;

Открытые простые формы не замыкают пространство и не могут существовать самостоятельно, а только в комбинациях. Например, призма + пинакоид.

Рис.6. Простые формы низшей категории: моноэдр (1), пинакоид (2), диэдр (3).

В низших сингониях возможны следующие открытые простые формы (рис. 6):

Моноэдр (от греч. "моно"- один, "эдра"- грань) - простая форма, представленная одной единственной гранью. Моноэдром является, например, основание пирамиды.

Пинакоид (от греч."пинакс"- доска) - простая форма, состоящая из двух равных параллельных граней, часто обратно ориентированных.

Диэдр (от греч."ди" - два, "эдр"- грань) - простая форма, образованная двумя равными пересекающимися (иногда на своем продолжении) гранями, образующими "прямую крышу".

Ромбическая призма - простая форма, которая состоит из четырех равных, попарно параллельных граней, которые в сечении образуют ромб.

Ромбическая пирамида - простая форма состоит из четырех равных пересекающихся граней; в сечении также - ромб. Из закрытых простых форм низших сингоний отметим следующие:

Ромбическая дипирамида две ромбические пирамиды, сложенные основаниями. Форма имеет восемь равных граней, дающих в поперечном сечении ромб.

Ромбический тетраэдр - простая форма, четыре грани которой имеют форму косоугольных треугольников и замыкают пространство.

Открытыми простыми формами сингоний средней категории будут призмы и пирамиды.

Тригональная призма (от греч."гон"- угол) - три равных грани, пересекающихся по параллельным ребрам и образующих в сечении равносторонний треугольник;

Тетрагональная призма (от греч."тетра"- четыре) - четыре равных попарно параллельных грани, образующих в сечении квадрат;

Гексагональная призма (от греч."гекса"- шесть) - шесть равных граней, пересекающихся по параллельным ребрам и образующих в сечении правильный шестиугольник.

Названия дитригональных, дитетрагональных и дигексагональных получили призмы с удвоенным числом граней, когда все грани равны, а одинаковые углы между гранями чередуются через один.

Пирамиды - простые формы кристаллов средней категории могут быть, также как и призмы, тригональными (и дитригональными), тетрагональными (и дитетрагональными), гексагональными(и дигексагональными). Они образуют в сечении правильные многоугольники. Грани пирамид располагаются под косым углом к оси симметрии высшего порядка.

В кристаллах средней категории встречаются так же закрытые простые формы. Таких форм несколько:

Дипирамиды - простые формы, образованные двумя равными пирамидами, сложенными основаниями. В таких формах происходит удвоение пирамиды горизонтальной плоскостью симметрии, перпендикулярной главной оси симметрии высшего порядка (рис. 8). Дипирамиды, как и простые пирамиды, в зависимости от порядка оси могут иметь различные формы сечения. Они могут быть тригональными, дитригональными, тетрагональными, дитетрагональными, гексагональными и дигексагональными.

Ромбоэдр - простая форма, которая состоит из шести граней в виде ромбов и напоминает вытянутый или сплющенный по диагонали куб. Он возможен только в тригональной сингонии. Верхняя и нижняя группа граней повернуты относительно друг друга на угол 60о таким образом, что нижние грани располагаются симметрично между верхними.

Строение вещества.

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества.
Наша задача познакомиться со строением вещества.


При низких температурах для веществ устойчиво твёрдое состояние.

☼ Самым твёрдым веществом в природе является алмаз. Он считается царём всех самоцветов и драгоценных камней. Да и само его название означает по-гречески «несокрушимый». На алмазы с давних пор смотрели как на чудодейственные камни. Считалось, что человек, носящий алмазы, не знает болезней желудка, на него не действует яд, он сохраняет до глубокой старости память и весёлое расположение духа, пользуется царской милостью.

☼ Алмаз, подвергнутый ювелирной обработке – огранке, шлифовке, называют бриллиантом.

При плавлении в результате тепловых колебаний порядок частиц нарушается, они становятся подвижными, при этом характер химической связи не нарушается. Таким образом, между твёрдым и жидким состояниями принципиальных различий нет.
У жидкости появляется текучесть (т. е. способность принимать форму сосуда).

Жидкие кристаллы.

Жидкие кристаллы открыты в конце XIX века, но изучены в последние 20-25 лет. Многие показывающие устройства современной техники, например некоторые электронные часы, мини-ЭВМ, работают на жидких кристаллах.

В общем-то слова «жидкие кристаллы» звучат не менее необычно, чем «горячий лёд» . Однако на самом деле и лёд может быть горячим, т.к. при давлении более 10000 атм. водяной лёд плавится при температуре выше 2000 С. Необычность сочетания «жидкие кристаллы» состоит в том, что жидкое состояние указывает на подвижность структуры, а кристалл предполагает строгую упорядоченность.

Если вещество состоит из многоатомных молекул вытянутой или пластинчатой формы и имеющих несимметричное строение, то при его плавлении эти молекулы ориентируются определённым образом друг относительно друга (их длинные оси располагаются параллельно). При этом молекулы могут свободно перемещаться параллельно самим себе, т.е. система приобретает свойство текучести, характерное для жидкости. В то же время система сохраняет упорядоченную структуру, обусловливающую свойства, характерное для кристаллов.

Высокая подвижность такой структуры даёт возможность управлять ею путём очень слабых воздействий (тепловых, электрических и др.), т.е. целенаправленно изменять свойства вещества, в том числе оптические, с очень малыми затратами энергии, что и используется в современной технике.

Типы кристаллических решёток.

Любое химическое вещество образованно большим числом одинаковых частиц, которые связаны между собою.
При низких температурах, когда тепловое движение затруднено, частицы строго ориентируются в пространстве и образуют кристаллическую решётку.

Кристаллическая решетка – это структура с геометрически правильным расположением частиц в пространстве.

В самой кристаллической решетке различают узлы и межузловое пространство.
Одно и то же вещество в зависимости от условий (p, t,…) существует в различных кристаллических формах (т.е. имеют разные кристаллические решетки) – аллотропных модификациях, которые отличаются по свойствам.
Например, известно четыре модификации углерода – графит, алмаз, карбин и лонсдейлит.

☼ Четвёртая разновидность кристаллического углерода «лонсдейлит» мало кому известна. Он обнаружен в метеоритах и получен искусственно, а строение его ещё изучается.

☼ Сажу, кокс, древесный уголь относили к аморфным полимерам углерода. Однако теперь стало известно, что это тоже кристаллические вещества.

☼ Кстати, в саже обнаружили блестящие чёрные частицы, которые назвали «зеркальным углеродом». Зеркальный углерод химически инертен, термостоек, непроницаем для газов и жидкостей, обладает гладкой поверхностью и абсолютной совместимостью с живыми тканями.

☼ Название графита происходит от итальянского «граффитто» - пишу, рисую. Графит представляет собой тёмно – серые кристаллы со слабым металлическим блеском, имеет слоистую решётку. Отдельные слои атомов в кристалле графита, связанные между собой сравнительно слабо, легко отделяются друг от друга.

ТИПЫ КРИСТАЛЛИЧЕСКИХ РЕШЁТОК







Свойства веществ с различной кристаллической решёткой (таблица)

Если скорость роста кристаллов мала при охлаждении – образуется стеклообразное состояние (аморфное).

Взаимосвязь между положением элемента в Периодической системе и кристаллической решёткой его простого вещества.

Между положением элемента в периодической системе и кристаллической решёткой его соответствующего простого вещества существует тесная взаимосвязь.



Простые вещества остальных элементов имеют металлическую кристаллическую решётку.

ЗАКРЕПЛЕНИЕ

Изучите материал лекции, ответьте на следующие вопросы письменно в тетради:
- Что такое кристаллическая решётка?
- Какие виды кристаллических решёток существуют?
- Охарактеризуйте каждый вид кристаллической решётки по плану:

Что в узлах кристаллической решётки, структурная единица → Тип химической связи между частицами узла → Силы взаимодействия между частицами кристалла → Физические свойства, обусловленные кристаллической решёткой → Агрегатное состояние вещества при обычных условиях → Примеры

Выполните задания по данной теме:


- Какой тип кристаллической решётки у следующих широко используемых в быту веществ: вода, уксусная кислота (CH3 COOH), сахар (C12 H22 O11 ), калийное удобрение (KCl), речной песок (SiO2 ) – температура плавления 1710 0C, аммиак (NH3 ), поваренная соль? Сделайте обобщённый вывод: по каким свойствам вещества можно определить тип его кристаллической решётки?
По формулам приведённых веществ: SiC, CS2 , NaBr, C2 H2 - определите тип кристаллической решётки (ионная, молекулярная) каждого соединения и на основе этого опишите физические свойства каждого из четырёх веществ.
Тренажёр №1. "Кристаллические решётки"
Тренажёр №2. "Тестовые задания"
Тест (самоконтроль):

1) Вещества, имеющие молекулярную кристаллическую решётку, как правило:
a). тугоплавки и хорошо растворимы в воде
б). легкоплавки и летучи
в). Тверды и электропроводны
г). Теплопроводны и пластичны

2) Понятия «молекула» не применимо по отношению к структурной единице вещества:

б). кислород

в). алмаз

3) Атомная кристаллическая решётка характерна для:

a). алюминия и графита

б). серы и йода

в). оксида кремния и хлорида натрия

г). алмаза и бора

4) Если вещество хорошо растворимо в воде, имеет высокую температуру плавления, электропроводно, то его кристаллическая решётка:

А). молекулярная

б). атомная

в). ионная

г). металлическая



Молекулярное и немолекулярное строение веществ. Строение вещества

В химические взаимодействия вступают не отдельные атомы или молекулы, а вещества. По типу связи различают вещества молекулярного и немолекулярного строения . Вещества, состоящие из молекул, называются молекулярными веществами . Связи между моле­кулами в таких веществах очень слабые, намно­го слабее, чем между атомами внутри молекулы, и уже при сравнительно низких температурах они разрываются - вещество превращается в жид­кость и далее в газ (возгонка йода). Температуры плавления и кипения веществ, состоящих из мо­лекул, повышаются с увеличением молекулярной массы. К молекулярным веществам относятся веще­ства с атомной структурой (C, Si, Li, Na, K, Cu, Fe, W), среди них есть металлы и неметаллы. К веществам немолекулярного строения отно­сятся ионные соединения. Таким строением обла­дает большинство соединений металлов с неметал­лами: все соли (NaCl, K 2 SO 4), некоторые гидриды (LiH) и оксиды (CaO, MgO, FeO), основания (NaOH, KOH). Ионные (немолекулярные) вещества имеют высокие температуры плавления и кипения.


Твердые вещества: аморфные и кристаллические

Твердые вещества делятся на кристаллические и аморфные .

Аморфные вещества не имеют четкой температуры плавления - при нагревании они постепенно размягчаются и переходят в текучее состояние. В аморфном состоянии, например, находятся пластилин и различные смолы.

Кристаллические вещества характеризуются правильным расположением тех частиц, из которых они состоят: атомов, молекул и ионов - в строго определенных точках пространства. При соединении этих точек прямыми линиями образуется пространственный каркас, называемый кристаллической решеткой. Точки, в которых размещены частицы кристалла, называют узлами решетки. В зависимости от типа частиц, расположенных в узлах кристаллической решетки, и характера связи между ними, различают четыре типа кристаллических решеток: ионные, атомные, молекулярные и металлические.

Ионными называют кристаллические решетки , в узлах которых находятся ионы. Их образуют ве­щества с ионной связью, которой могут быть свя­заны как простые ионы Na+, Cl — , так и сложные SO 4 2- , OH — . Следовательно, ионными кристалличе­скими решетками обладают соли, некоторые оксиды и ги­дроксиды металлов. Напри­мер, кристалл хлорида натрия построен из чередующихся положительных ионов Na + и отрицательных Cl — , образующих решетку в форме куба. Связи между ионами в таком кристалле очень устойчивы. Поэтому вещества с ионной решеткой отличаются сравнительно высокой твердостью и прочностью, они тугоплавки и нелетучи.

Кристаллическая решетка — а) и аморфная решетка — б).


Кристаллическая решетка — а) и аморфная решетка — б).

Атомные кристаллические решетки

Атомными называют кристаллические решетки, в узлах которых находятся отдельные атомы. В таких решетках атомы соединены между собой очень прочными ковалентными связями . Примером веществ с таким типом кристаллических решеток может служить алмаз - одно из аллотропных видоизменений углерода. Большинство веществ с атомной кристаллической решеткой имеют очень высокие температуры плавления (например, у алмаза она свыше 3500 °С), они прочны и тверды, практически нерастворимы.



Молекулярные кристаллические решетки

Молекулярными называют кристаллические решетки, в узлах которых располагаются молекулы. Химические связи в этих молекулах могут быть и полярными (HCl, H 2 O), и неполярными (N 2 , O 2). Несмотря на то, что атомы внутри молекул связаны очень прочными ковалентными связями, между самими молекулами действуют слабые силы межмолекулярного притяжения . По­этому вещества с молекуляр­ными кристаллическими ре­шетками имеют малую твер­дость, низкие температуры плавления, летучи. Большинство твердых ор­ганических соединений имеют молекулярные кристалличе­ские решетки (нафталин, глю­коза, сахар).


Молекулярная кристаллическая решетка(углекислый газ)

Металлические кристаллические решетки

Вещества с металлической связью имеют металлические кристаллические решетки. В узлах таких решеток находятся атомы и ионы (то атомы, то ионы, в которые легко превращаются атомы металла, отдавая свои внешние электроны «в общее пользование»). Такое внутреннее строение металлов определяет их характерные физические свойства: ковкость, пластичность, электро- и теплопроводность, характерный металлический блеск.

Шпаргалки

mob_info