О термопарах: что это такое, принцип действия, подключение, применение. Самодельная термобатарейка из двух проводов

Термоэлектродные сплавы

Термоэлектродные сплавы – это группа сплавов, применяемых для создания термопар и других элементов термоэлектрических устройств. Работа термопары основана на возникновения термической электродвижущей силы (ТЭДС) в месте контакта двух разнородных металлов. Эта сила зависит от температуры, что дает возможность ее измерения. Кроме температуры, Термо-ЭДС зависит от типа термопары, то есть, от составляющих ее материалов.

Общие требования к материалам для термопар

Поскольку термопары являются ключевыми компонентами измерительных приборов, к материалам, из которых они изготавливаются, предъявляется множество требований.

Сплавы, из которых изготавливается термопара, должны создавать достаточно большую (ТермоЭДС), чтобы ее можно было измерить с приемлемой точностью. При этом напряжение на выводах термопары должно быть однозначной функцией температуры, не имеющей экстремумов в рабочем диапазоне, по возможности, близкой к линейной.
От термоэлектродных сплавов требуется стойкость к нагреву. При любой рабочей температуре термопара должна сохранять коррозионную стойкость в тех средах, для которых она предназначена, и не достигать точки плавления.
Материалы термопар должны обеспечивать воспроизводимость качеств при производстве в промышленном масштабе и сохранять неизменными характеристики термопар весь период их эксплуатации.
Сплавы должны быть достаточно пластичными, чтобы из них можно было изготавливать проволоку и придавать другие формы.
Цена термопары не должна быть слишком высокой, поэтому в состав сплавов нежелательно включать драгоценные металлы.
Всем этим требованиям соответствуют никелевые и медно-никелевые сплавы, легированные специальными добавками. Сплавы производятся как термопарная проволока, лента или круг.

Алюмель
Это сплав на основе никеля, содержание которого составляет около 93,5 %. Вместе с никелем, в качестве примеси, в состав входит кобальт в количестве 0,6-1,2 %. Содержание других элементов – алюминия, углерода, железа, марганца, кремния колеблется от 0,1 до 2,4 %.

Проволока алюмель применяется в качестве элемента термопары хромель-алюмель (тип К), а также как термоэлектродные провода, входящие в конструкцию измерительных приборов.

Допустимый максимум температуры зависит от диаметра проволоки. При диаметре менее 1,2 мм верхняя граница диапазона измерений опускается до 800оС (1000), а при диаметре меньшем 0,5 мм – до 600оС (800). Здесь в скобках указаны величины для сплава с расширенным рабочим диапазоном.

Хромель

Хромель по своему составу близок к алюмели. Основой также является никель с примесью кобальта. Содержание алюминия, кремния и марганца намного ниже.

Хромель имеет удачное сочетание уровня ТЕРМО ЭДС и его стабильности с повышенной термостойкостью: плавится при 1500оС, максимальные температуры измерений – такие же, как у алюмели (для версии «хромель Т»). Сплав устойчив к коррозии в агрессивных средах. При высокой температуре на поверхности изделия появляется стойкая пленка окислов зеленоватого оттенка, защищающая металл от дальнейшего разрушения.

Термо-ЭДС довольно высока, но главное – это практически линейная характеристика и стабильность во времени в широком диапазоне температур.

Лента и проволока хромель используется для производства термопар типов Е, К, L (сплавы хромель-Т и хромель-ТМ) и для изготовления компенсационных проводов (хромель-К и хромель-КМ).

Копель

Это медно-никелевый сплав. Медь в нем служит основой, ее содержание – около 55 %. Никеля вместе с примесью кобальта содержится 42,5-44 %. Из других компонентов наибольшая доля приходится на марганец – до 1 %. Остальное – это железо, углерод, кремний в количествах, измеряемых сотыми долями процента.

Копель имеет невысокий верхний предел измерений – 600 оС (до 800 оС – по спецзаказу). В паре с железом, медью и хромелем обладает высоким термо-ЭДС, что повышает точность измерений. Термопара хромель-копель при 500 оС выдает напряжение 40,3 мВ, тогда как ближайший «конкурент», железо-константан, показывает лишь 37 мВ. ТЕРМОЭДС большинства других термопар при тех же условиях не превышает 10 мВ. (Здесь приведены табличные значения из ГОСТ Р 8.585-2001).

Проволока копель применяется для изготовления термопар типов L и M. Тип М используется для измерения температур до 100оС. Купить термопары этого типа стоит для измерения низких температур. Нижняя граница их рабочего диапазона простирается до -200оС.

Константан

Этот сплав на медно-никелевой основе по составу близок к копелю. В нем немного больше меди и чуть меньше никеля. Константан обладает высоким электросопротивлением и его слабой зависимостью от температуры, за что и получил свое название.

Высокое удельное сопротивление константана находит применение при изготовлении из него резистивных и нагревательных элементов. В паре с хромелем медью и железом этот сплав дает высокие значения ТЭДС, немного отставая в этом от копеля.

Проволока из константана применяется для изготовления термопар типов Е, Т и J. Высокотемпературная область применения термопар типа Т (медь-константан) ограничена 400 оС.

Между тем, существует и масса других примеров оборудования, нормальное функционирование которых становится невозможным без вышедшего из строя датчика температур, который внешне походит на обычную проволоку. При этом вопрос изготовления термопары своими руками зачастую встает на повестке дня не столько, как один из способов экономии, сколько как невозможность подборки замены (пример - устаревшая модель, выпуск и поставка запчастей для которой давно прекращены сервисным центром). На самом же деле сгоревший датчик температур - вовсе не повод для того, чтобы выбрасывать вышедшее из строя оборудование на свалку, ведь существует масса простых и легких способов того, как выполнить ее вручную, причем народные умельцы предлагают сразу два основных варианта ведения работ - посредством применения газосварочной установки любого типа или же осуществление соединения различных материалов без нее.

Так, самый простой способ того, как изготовить качественную замену вышедшему из строя датчику температур своими руками заключается в сварочном соединении таких трех материалов, как копель, алюмель и хромель. При этом их сначала необходимо скрутить в плотный жгут и только после этого сварить в единое соединение. Единственная сложность, которая может возникнуть на пути к поставленной цели, заключается в том, что далеко не всегда есть возможность найти или приобрести необходимые материалы. Зачастую их приходится искать в полностью автоматизированных котельных, пунктах приема металла или же на рынках, где продаются различные детали, провода и крепежные элементы. Что касается газосварочного аппарата, то не стоит особо переживать и отказываться от задуманного в том случае, если ее нет в наличии или человек не обладает опытом работы с установками подобного рода, ведь для нее существует достойная альтернатива.

Так, главной задачей при осуществлении качественной сварки без применения газосварочного аппарата, является обеспечение мощного источника напряжения, в качестве которого можно использовать либо автотрансформатор лабораторного типа, либо, на худой конец, аккумулятор от автомобиля. Порядок действия также не представляет собой ровным счетом ничего сложного и обычно заключается в том, что предварительно скрученные в плотный жгут проволоки из разных материалов присоединяются свободными концами одной стороны к полюсу источника напряжения, в то время, как к другим свободным концам будущей термопары подводят вывод, прочно соединенный с кусочком графита. В качестве последнего материала можно использовать обычный стержень от простого карандаша, который можно легко извлечь, аккуратно распилив деревянную заготовку по направлению продольного сечения.

Прочная сварка соединенных механическим путем проволок обеспечивается за счет создания электрической дуги при присоединении графитового фрагмента, при этом огромное значение имеет полное обеспечение техники безопасности, для чего в идеале небольшой участок проводов полностью защитить изоляционной лентой или специальной съемной гофрой. Однако для полного обеспечения собственной безопасности и таких мер мало и крайне важно не проводить работы под высоким напряжением, поэтому максимально допустимыми нормами в этом плане считаются показатели, не превышающие в 40-50 Вольт. В идеале же лучше стартовать с небольших мощностей (их диапазон может варьировать от трех до пяти Вольт), постепенно повышая данный показатель, если это необходимо для обеспечения, действительно, прочного сваривания скрученных в жгут элементов.

Существует еще один метод выполнения прочного соединения, не предполагающий задействование газосварочного аппарата. Он заключается в том, чтобы обеспечить разогрев соединенных механическим путем проволок будущей термопары за счет дугового разряда, возникающего между ними и крепким раствором из обычной поваренной соли и дистиллированной воды. Так, в результате данного воздействия на провода происходит их плавление и "склеивание" между собой, после чего термопару можно считать полностью готовой. При этом огромное значение имеет диаметр жгута выполненного изделия, который не должен быть слишком большим. Все допустимые значения, как и подробные схемы по созданию электрической дуги в домашних условиях (расположение проволочек относительно водно-солевого раствора или соединение их с графитовым стержнем), можно без особой сложности найти практически на любом сетевом ресурсе.

Сейчас мы с вами разберемся в назначении термопары в газовом котле, ее особенностях и принципах работы. В конце разберемся как провести ремонт своими руками.

Узнать цену и купить отопительное оборудование и сопутствующие товары вы можете у нас. Пишите, звоните и приходите в один из магазинов в вашем городе. Доставка по всей территории РФ и стран СНГ.

Любой котел, независимо от вида и принципа его действия, нуждается в термопаре — устройстве, которое будет контролировать температуру в камере сгорания и автоматически перекрывать подачу газа при исчезновении пламени.

Для газового котла — необходимый элемент в системе отопления, который помогает избежать перегрева котла и возможности его поломки.

Термопара для газового котла

Чтобы понять как работает термопара в газовом котле, в первую очередь необходимо познакомиться с его устройством и принципом действия.

Термопара — это конструкция из двух пластин-проводников, которая состоит из разных сплавов. Устройство является достаточно простым, но в то же время надежным.

Принцип работы данного устройства базируется на физическом явлении — эффекте Зеебека.

Процесс образования электродвижущей силы на границе стыка двух разнородных проводников, контакты которых имеют температурные отличия. Эффект Зеебека

Если две детали из разнородных металлов прочно соединить, а место соединения нагреть, то на холодных окончаниях спаянного проводника появится разница потенциалов — напряжение. При появлении напряжения клапан сразу автоматически открывается, позволяя топливу проходить к .

Принцип работы термопары газового котла

Виды термопар

Сегодня рынок котельного оборудования отличается обилием разнообразных термопар, которые подразделяются на несколько типов. Металл, использующийся при их изготовлении, является главным критерием, на основе которого они дифференцируются.

Из неблагородных металлов

Тип термопары Сплав Российская маркировка Диапазон температур, °С Особенности термопары
K хромель-алюмель TXA от -200 °С
до +1000 °С
Возможность работы в нейтральной атмосфере либо атмосфере с избытком кислорода
L хромель-копель TXK от -200 °С
до +800 °С
Самая высокая чувствительностью из всех промышленных термопар. Свойственна только высокая термоэлектрическая стабильность при температурах до 600 °С.
E хромель-константан TXKn от -40 °С
до +900 °С
Высокая чувствительность.
T медь-константан TMKn от -250 °С
до +300 °С
Может работать в атмосфере, в которой небольшой избыток или недостаток кислорода. Не чувствительна к повышенной влажности.
J железо-константан ТЖК от -100 °С
до +1200 °С
Хорошо работает в разряженной атмосфере. Невысокая стоимость обусловлена входящим в состав железом.
А вольфрам-рений ТВР выше +1800 °С Хорошие показатели механических свойств при высокой температуре. Может работать при частых и резких теплосменах и при больших нагрузках. Неприхотливость при изготовлении и монтаже, так как имеют небольшую чувствительность к загрязнениям.
N нихросил-нисил ТНН от -200 °С
до +1300 °С
В группе неблагородных металлов считается самой точной термопарой . Высокая стабильность при температурах от 200 до 500 °С.

Из благородных металлов

Типы термопары Сплав Российская маркировка Диапазон температур, °С Особенности термопары
B платинородий-платинородиевая ТПР от +100 °С
до +1800 °С
Высокая механическая прочность. Большая стабильность при высоких температурах. Небольшая склонность к росту зерна и охрупчиванию . Невысокая чувствительность к загрязнению.
S платинородий-платина ТПП10 от 0 °С
до +1700 °С
Высокая точность измерений. Хорошая воспроизводимость и стабильность термоЭДС.
R платинородий-платиновая ТПП14 от 0 °С
до +1700 °С
Обладает свойствами, идентичными термопаре типа S.

В системах автоматики котлов чаще используются термопары типов: E, J, K.

Подключение и проверка

Подключение термопары должно производиться электродами (проводами), изготовленными из того же материала, что и подключаемая термопара.

Либо могут использоваться металлические провода, которые имеют характеристики, аналогичные свойствам электродов на самой термопаре.

Перед подключением термопар для котлов отопления, важно зачистить концы проводов, чтобы удалить окислы, которые оказывают влияние на точность измерений. А во время установки важно проследить за тем, чтобы трубки отвода и подачи топлива были опущены строго вниз.

В случае, если термопара сломалась, как правило, восстановить ее уже невозможно, поэтому важно знать, как проверить термопару мультиметром на газовом котле.

Срабатывать рабочая термопара должна после 10-30 секунд нагрева

Чтобы проверить её работоспособность, достаточно соединить один конец с мультиметром — измерительным датчиком, а другой конец нагреть, используя либо зажигалку.

Комбинированный электроизмерительный прибор, который может быть цифровым и аналоговым, объединяет в себе несколько функций (как минимум функции вольтметра, омметра, амперметра). Мультиметр

Рабочая термопара должна иметь напряжение в районе 50 мВ.

В случае подтверждения неисправности термопары, заменить её можно своими руками.

Ремонт термопары своими руками

Чтобы устранить неполадку своими руками необходимо:

  • прижимную гайку открутить гаечным ключом и и достать ее конец;
  • шнуровкой-нулевкой очистить от загрязнений;
  • произвести проверку термопары мультиметром;
  • убедиться, что все показатели соответствуют нормам;
  • собрать термопару обратно и запустить котел.

Если починить термопару не удается, то всегда есть возможность купить новую. Российский рынок предлагает большой ассортимент данных приборов, выпускаемых различными производителями, например, АБАТ, АОГВ, АКГВ. Их цена колеблется в диапазоне от 300 до 2000 рублей. На газовые котлы иностранного производства (например, Bosch, Viessmann, Vaillant) цена термопары будет выше.

Сегодня термопары нашли активное применение в , выбор их на рынке велик, и каждый имеет возможность приобрести универсальную термопару. Однако, выбирая термопару самостоятельно можно столкнуться с рядом трудностей. Следует обратиться к специалисту, который подскажет как выбрать прибор, соответствующий всем характеристикам газового котла. Также можно воспользоваться таблицей зависимости технических характеристик прибора с характеристиками газового котла.

Термопара представляет собой измеритель температуры, действие которого основано на способности двух разнородных металлических проводников или полупроводников, соединенных между собой, генерировать эдс, пропорциональную температуре места соединения, или, как говорят, спая. Термопары подсоединяют к милливольтметру или потенциометру, по показаниям которого и определяют температуру нагретого спая.

Термопару легко сделать своими силами (рис. 1, а, б). Для этого две проволоки 4 (например, из сплавов хромель и копель) скручивают между собой на длине 6 - 8 мм и после тщательной зачистки пропаивают чистым оловом или сваривают. При пайке применяют только бескислотные флюсы. После сварки головку 5 термопары можно проковать легкими ударами молотка для получения лопатообразной формы.

Термопары с такой головкой используют для измерения температуры сердечников машин и трансформаторов. Для установки термопары листы сердечника раздвигают и в образовавшуюся щель вставляют лопатообразную головку термопары.

Часто в электротехническое изделие закладывают несколько термопар для измерения температуры его различных частей. В этом случае концы термопар поочередно подключают к одному и тому же прибору. Конструкция переключателя должна обеспечивать отсутствие контакта между термопарами при переходе от одной термопары к другой, так как в противном случае стрелка прибора будет испытывать резкие толчки.

Для равенства сопротивления всех термопар их необходимо изготовлять с одинаковой длиной концов и из одной партии проволоки.

Помимо этого термопары после изготовления должны быть выверены между собой, для чего их погружают в закрытый сосуд с трансформаторным маслом, нагретым до температуры 70 - 80°С, и, передвигая ручку переключателя с одной термопары на другую, находят термопару с максимальными показаниями. Эту термопару принимают за контрольную и с ее показаниями сравнивают показания остальных термопар при укорачивании их длины для выравнивания сопротивлений.

Рис. 1. Изготовление термопары (а) и ее вид после сварки (б): 1 - клещи, 2 - сварочный электрод, 3, 4 - проволока, 5 - головка

Рис. 2. Встречно-последовательное включение термопар: 1 - горячий спай, 2 - холодный спай

При измерениях таким методом следует помнить, что ток, проходящий по термопаре, зависит от разности температур контролируемой точки и конца термопары, к которому подключен измерительный прибор. Поэтому для нахождения температуры контролируемой точки необходимо знать температуру в месте расположения измерительного прибора.

Это свойство термопары позволяет при необходимости измерять разность температур в двух контролируемых точках, для чего две термопары включают встречно-последовательно.

Многих электриков новичков интересует один очень популярный вопрос – как сделать электричество бесплатным и в то же время автономным. Очень часто, к примеру, при выезде на природу, катастрофически не хватает розетки для подзарядки телефона либо включения светильника. В этом случае Вам поможет самодельный термоэлектрический модуль, собранный на базе элемента Пельтье. С помощью такого устройства можно генерировать ток, напряжением до 5 Вольт, чего вполне хватит для зарядки девайса и подключения лампы. Далее мы расскажем, как сделать термоэлектрический генератор своими руками, предоставив простой мастер-класс в картинках и с видео примером!

Кратко о принципе действия

Чтобы в дальнейшем Вы понимали, для чего нужны те или иные запчасти при сборке самодельного термоэлектрического генератора, сначала поговорим об устройстве элемента Пельтье и о том, как он работает. Данный модуль состоит из последовательно соединенных термопар, находящихся между керамических пластин, как показано на картинке ниже.

Когда через такую цепь проходит электрический ток, происходит так называемый эффект Пельтье — одна сторона модуля нагревается, а вторая – охлаждается. Для чего это нам нужно? Все очень просто, если действовать в обратном порядке: одну сторону пластины нагреть, а второю охладить, соответственно можно сгенерировать электроэнергию небольшого напряжения и силы тока. Надеемся, что на данном этапе все понятно, поэтому переходим к мастер-классам, которые наглядно покажут из чего и как сделать термоэлектрический генератор своими руками.

Мастер-класс по сборке

Итак, мы нашли в интернете очень подробную и в то же время простую инструкцию по сборке самодельного генератора электроэнергии на базе печи и элемента Пельтье. Для начала Вам необходимо подготовить следующие материалы:

  • Непосредственно сам элемент Пельтье с параметрами: максимальный ток 10 А, напряжение 15 Вольт, размеры 40*40*3,4 мм. Маркировка – TEC 1-12710.
  • Старый блок питания от компьютера (с него нужен только корпус).
  • Стабилизатор напряжения, со следующими техническими характеристиками: входное напряжение 1-5 Вольт, на выходе – 5 Вольт. В данной инструкции по сборке термоэлектрического генератора используется модуль с USB выходом, что упростит процесс подзарядки современного телефона либо планшета.
  • Радиатор. Можно взять от процессора сразу с куллером, как показано на фото.
  • Термопаста.

Подготовив все материалы можно переходить к изготовлению устройства своими руками. Итак, чтобы Вам было понятнее, как самому сделать генератор, предоставляем пошаговый мастер-класс с картинками и подробным объяснением:


Работает термоэлектрический генератор следующим образом: внутри печи засыпаете дрова, поджигаете их и ждете несколько минут, пока одна из сторон пластины не нагреется. Для подзарядки телефона нужно, чтобы разница между температурами разных сторон была около 100 о С. Если охлаждающая часть (радиатор) будет нагреваться, его нужно остужать всеми возможными методами – аккуратно поливать водой, поставить на него кружку со льдом и т.д.

А вот и видео, на котором наглядно показывается, как работает самодельный электрогенератор на дровах:

Генерация электричества из огня

Также можно установить на холодную сторону вентилятор от компьютера, как показывается на втором варианте самодельного термоэлектрического генератора с элементом Пельтье:

В этом случае куллер будет затрачивать небольшую долю мощности генераторной установки, но в итоге система будет с более высоким КПД. Помимо телефонной зарядки модуль Пельтье можно использовать в качестве источника электроэнергии для светодиодов, что не менее полезный вариант применения генератора. Кстати, второй вариант самодельного термоэлектрического генератора с виду и по конструкции немного похож. Единственная модернизация, помимо системы охлаждения, это способность регулировать высоту так называемой горелки. Для этого автор элемента использует «тело» CD-ROMа (на одном из фото хорошо видно, как самому можно изготовить конструкцию).


Если сделать термоэлектрический генератор своими руками по такой методике, на выходе у Вас может быть до 8 Вольт напряжения, поэтому чтобы заряжать телефон, не забудьте подключить преобразователь, который на выходе оставит только 5 В.

Ну и последний вариант самодельного источника электроэнергии для дома может быть представлен такой схемой: элемент – два алюминиевых «кирпичика», медная труба (водяное охлаждение) и конфорка. Как результат – эффективный генератор, позволяющий сделать бесплатное электричество в домашних условиях!

mob_info