К какой группе химических соединений относятся ферменты. Структурно-функциональная организация ферментов

Часто наряду с витаминами, минералами и другими полезными для организма человека элементами упоминают вещества под названием ферменты. Что такое ферменты и какую функцию в организме они выполняют, какова их природа и где они находятся?

Это вещества белковой природы, биокатализаторы. Без них не существовало бы детского питания, готовых каш, кваса, брынзы, сыра, йогурта, кефира. Они влияют на работу всех систем человеческого организма. Недостаточная или избыточная активность этих веществ негативно сказывается на здоровье, поэтому нужно знать, что такое ферменты, чтобы избежать проблем, вызванных их нехваткой.

Что это такое?

Ферменты - это синтезирующиеся живыми клетками белковые молекулы. Их более сотни насчитывается в каждой клетке. Роль этих веществ колоссальна. Они влияют на течение скорости химических реакций при температуре, которая подходит для данного организма. Другое название ферментов - биологические катализаторы. Увеличение скорости химической реакции происходит за счет облегчения ее протекания. Как катализаторы, они не расходуются в процессе реакции и не изменяют ее направления. Главные функции ферментов заключаются в том, что без них очень медленно в живых организмах протекали бы все реакции, а это бы заметно сказывалось на жизнеспособности.

Например, при пережевывании продуктов, которые содержат крахмал (картофель, рис), во рту появляется сладковатый привкус, что связано с работой амилазы - фермента для расщепления крахмала, присутствующего в слюне. Сам по себе крахмал безвкусный, так как является полисахаридом. Сладкий вкус имеют продукты его расщепления (моносахариды): глюкоза, мальтоза, декстрины.

Все делятся на простые и сложные. Первые состоят только из белка, а вторые - из белковой (апофермент) и небелковой (кофермент) части. Коферментами могут быть витамины групп В, Е, К.

Классы ферментов

Традиционно эти вещества разделены на шесть групп. Название им первоначально давали в зависимости от субстрата, на который действует определенный фермент, путем добавления к его корню окончания -аза. Так, те ферменты, что гидролизируют белки (протеины) стали называть протеиназами, жиры (липос) - липазами, крахмал (амилон) - амилазами. Потом ферменты, катализирующие сходные реакции, получили названия, которые указывают на тип соответствующей реакции - ацилазы, декарбоксилазы, оксидазы, дегидрогеназы и другие. Большинство этих названий и сегодня используется.

Позже Международный биохимический союз ввел номенклатуру, согласно которой название и классификация ферментов должны соответствовать типу и механизму катализируемой химической реакции. Данный шаг принес облегчение в систематизации данных, что относятся к различным аспектам метаболизма. Реакции и катализирующие их ферменты делятся на шесть классов. Каждый класс состоит из нескольких подклассов (4-13). Первая часть названия фермента отвечает названию субстрата, вторая - типу катализируемой реакции с окончанием -аза. У каждого фермента по классификации (КФ) есть свой кодовый номер. Первой цифре отвечает класс реакции, следующей - подкласс и третьей - подподкласс. Четвертой цифрой обозначен номер фермента по порядку в его подподклассе. Например, если КФ 2.7.1.1, то фермент принадлежит ко 2-му классу, 7-му подклассу, 1-му подподклассу. Последней цифрой обозначается фермент гексокиназа.

Значение

Если говорить о том, что такое ферменты, нельзя обойти стороной вопрос об их значении в современном мире. Они нашли широкое применение почти во всех отраслях деятельности человека. Такая их распространенность связана с тем, что они способны вне живых клеток сохранять свои уникальные свойства. В медицине, например, применяются ферменты групп липаз, протеаз, амилаз. Они расщепляют жиры, белки, крахмал. Как правило, этот тип входит в состав таких лекарственных препаратов, как «Панзинорм», «Фестал». Эти средства в первую очередь используются с целью лечения заболеваний ЖКТ. Некоторые ферменты способны растворять в кровеносных сосудах тромбы, они помогают при лечении гнойных ран. В лечении онкологических заболеваний энзимотерапия занимает особое место.

Благодаря способности расщеплять крахмал в пищевой промышленности широко используется фермент амилаза. В этой же области применяют липазы, которые расщепляют жиры и протеазы, расщепляющие белки. В пивоварении, виноделии и хлебопечении используют ферменты амилазы. В приготовлении готовых каш и для смягчения мяса применяют протеазы. В производстве сыра используют липазы и сычужный фермент. В косметической промышленности также не обойтись без них. Они входят в состав стиральных порошков, кремов. В стиральные порошки, например, добавляют расщепляющую крахмал амилазу. Белковые загрязнения и белки расщепляются протеазами, а липазы очищают ткань от масла и жира.

Роль ферментов в организме

Два процесса отвечают в организме человека за обмен веществ: анаболизм и катаболизм. Первый обеспечивает усвоение энергии и необходимых веществ, второй - распад продуктов жизнедеятельности. Постоянное взаимодействие этих процессов влияет на усвоение углеводов, белков и жиров и поддержание жизнедеятельности организма. Обменные процессы регулируются тремя системами: нервной, эндокринной и кровеносной. Они могут нормально функционировать с помощью цепи ферментов, которые в свою очередь обеспечивают адаптацию человека к изменениям условий внешней и внутренней среды. В состав ферментов входит как белковая, так и небелковая продукция.

В процессе биохимических реакций в организме, в протекании которых принимают участие ферменты, сами они не расходуются. У каждого из них своя химическая структура и своя уникальная роль, поэтому каждый инициирует только определенную реакцию. Биохимические катализаторы помогают прямой кишке, легким, почкам, печени выводить токсины и продукты жизнедеятельности из организма. Также они способствуют построению кожи, костей, нервных клеток, мышечных тканей. Специфические ферменты используются для окисления глюкозы.

Все ферменты в организме делятся на метаболические и пищеварительные. Метаболические участвуют в нейтрализации токсинов, производстве белков и энергии, ускоряют в клетках биохимические процессы. Так, например, супероксидисмутаза является сильнейшим антиоксидантом, который содержится в естественном виде в большинстве зеленых растений, белокочанной, брюссельской капусте и брокколи, в проростках пшеницы, зелени, ячмене.

Активность ферментов

Для того чтобы данные вещества полностью выполняли свои функции, необходимы определенные условия. На их активность влияет в первую очередь температура. При повышенной возрастает скорость химических реакций. В результате увеличения скорости молекул у них появляется больше шансов на столкновение друг с другом, и возможность протекания реакции, следовательно, увеличивается. Оптимальная температура обеспечивает наибольшую активность. Вследствие денатурации белков, которая происходит при отклонении оптимальной температуры от нормы, снижается скорость химической реакции. При достижении температуры точки замерзания фермент не денатурирует, но инактивируется. Способ быстрого замораживания, который широко используют для длительного хранения продуктов, останавливает рост и развитие микроорганизмов с последующей инактивацией ферментов, которые находятся внутри. Как результат, продукты питания не разлагаются.

На активность ферментов также влияет кислотность окружающей среды. Работают они при нейтральном рН. Только некоторые из ферментов работают в щелочной, сильнощелочной, кислой или сильнокислой среде. Например, сычужный фермент расщепляет белки в сильнокислой среде в желудке человека. На фермент могут действовать ингибиторы и активаторы. Активируют их некоторые ионы, например, металлов. Другие ионы оказывают подавляющее действие на активность ферментов.

Гиперактивность

Избыточная активность ферментов несет свои последствия для функционирования всего организма. Во-первых, она провоцирует повышение скорости действия фермента, что в свою очередь вызывает дефицит субстрата реакции и образование избытка продукта химической реакции. Дефицит субстратов и накопление названных продуктов заметно ухудшает самочувствие, нарушает жизнедеятельность организма, вызывает развитие заболеваний и может закончиться смертью человека. Накопление мочевой кислоты, например, приводит к возникновению подагры и почечной недостаточности. Из-за отсутствия субстрата не возникнет избытка продукта. Это работает только в тех случаях, когда без одного и другого можно обойтись.

Причин избытка активности ферментов несколько. Первая - это мутация гена, она может быть врожденной или приобретенной под влиянием мутагенов. Второй фактор - избыток в воде или пище витамина или микроэлемента, который необходим для работы фермента. Избыток витамина С, к примеру, через повышенную активность ферментов синтеза коллагена нарушает механизмы заживления ран.

Гипоактивность

Как повышенная, так и пониженная активность ферментов негативно сказывается на деятельности организма. Во втором случае возможно полное прекращение активности. Это состояние резко снижает скорость химической реакции фермента. Как результат, накапливание субстрата дополняется дефицитом продукта, что приводит к серьезным осложнениям. На фоне нарушений жизнедеятельности организма ухудшается самочувствие, развиваются заболевания, и может быть летальный исход. Накопление аммиака или дефицит АТФ приводит к смерти. Из-за накопления фенилаланина развивается олигофрения. Здесь также действует принцип, что при отсутствии субстрата фермента не возникнет накопления субстрата реакции. Плохое влияние на организм оказывает состояние, при котором не выполняют своих функций ферменты крови.

Рассматривают несколько причин гипоактивности. Мутация генов врожденная или приобретенная - это первое. Состояние можно откорректировать с помощью генотерапии. Можно попробовать исключить из пищи субстраты отсутствующего фермента. В некоторых случаях это может помочь. Второй фактор - отсутствие в пище витамина или микроэлемента, необходимых для работы фермента. Следующие причины - нарушенная активация витамина, дефицит аминокислот, ацидоз, появление ингибиторов в клетке, денатурация белков. Активность ферментов снижается также со снижением температуры тела. Некоторые факторы влияют на функции ферментов всех типов, а другие - только на работу определенных.

Пищеварительные ферменты

От процесса приема пищи человек получает удовольствие и иногда игнорирует то, что главная задача пищеварения - это превращение продуктов питания в вещества, способные стать источником энергии и строительным материалом для тела, всасываясь в кишечник. Ферменты белков способствуют этому процессу. Пищеварительные вещества вырабатываются органами пищеварения, принимающими участие в процессе расщепления пищи. Действие ферментов нужно для того, чтобы получать необходимые углеводы, жиры, аминокислоты из пищи, что составляет необходимые питательные вещества и энергию для нормальной жизнедеятельности организма.

С целью нормализации нарушенного пищеварения рекомендуется с приемом пищи одновременно применять и необходимые белковые вещества. При переедании можно принять 1-2 таблетки после или во время еды. В аптеках продается большое количество различных ферментных препаратов, которые способствуют улучшению процессов пищеварения. Запастись ими следует при приеме одного вида питательных веществ. При проблемах с пережевыванием или глотанием пищи необходимо во время еды принимать ферменты. Весомыми причинами для их использования могут быть также такие заболевания, как приобретенные и врожденные ферментопатии, синдром раздраженной толстой кишки, гепатит, холангит, холецистит, панкреатит, колит, хронический гастрит. Ферментные препараты следует принимать вместе с лекарствами, влияющими на процесс пищеварения.

Энзимопатология

В медицине есть целый раздел, который занимается поиском связи между заболеванием и отсутствием синтеза определенного фермента. Это область энзимологии - энзимопатология. Недостаточный синтез ферментов также подлежит рассмотрению. Например, наследственное заболевание фенилкетонурия развивается на фоне потери способности клеток печени осуществлять синтез этого вещества, что катализирует превращение в тирозин фенилаланина. Симптомами данного заболевания являются расстройства психической деятельности. Из-за постепенного накопления токсических веществ в организме больного тревожат такие признаки, как рвота, беспокойство, повышенная раздражительность, отсутствие интереса к чему-либо, выраженная усталость.

При рождении ребенка патология не проявляется. Первичную симптоматику можно заметить в возрасте от двух до шести месяцев. Второе полугодие жизни малыша характеризируется выраженным отставанием в психическом развитии. У 60% больных развивается идиотия, менее чем 10% ограничиваются слабой степенью олигофрении. Ферменты клетки не справляются со своими функциями, но это можно поправить. Своевременная диагностика патологических изменений способна приостановить развитие заболевание до периода полового созревания. Лечение заключается в ограничении поступления с пищей фенилаланина.

Ферментные препараты

Отвечая на вопрос о том, что такое ферменты, можно отметить два определения. Первое - это биохимические катализаторы, а второе - это препараты, которые их содержат. Они способны нормализировать состояние среды в желудке и кишечнике, обеспечить расщепление до микрочастиц конечных продуктов, улучшить процесс всасывания. Они также препятствуют возникновению и развитию гастроэнтерологических заболеваний. Наиболее известным из ферментов является лекарственный препарат «Мезим Форте». В своем составе он имеет липазу, амилазу, протеазу, которые способствуют уменьшению болей при хроническом панкреатите. Капсулы принимают в качестве заместительного лечения при недостаточной выработке поджелудочной железой необходимых ферментов.

Данные препараты употребляются преимущественно во время еды. Количество капсул или таблеток назначает доктор, исходя из выявленных нарушений механизма всасывания. Хранить их лучше в холодильнике. При длительном приеме пищеварительных ферментов привыкания не возникает, и на работе поджелудочной железы это не сказывается. При выборе препарата стоит обратить внимание на дату, соотношение качества и цены. Препараты ферментов рекомендуют принимать при хронических заболеваниях органов пищеварения, при переедании, при периодических проблемах с желудком, а также при отравлении продуктами питания. Чаще всего доктора назначают таблетированный препарат «Мезим», который хорошо зарекомендовал себя на отечественном рынке и уверенно держит позиции. Есть и другие аналоги этого препарата, не менее известные и более чем доступные по цене. В частности, многие предпочитают таблетки "Пакреатин" или "Фестал", обладающие теми же свойствами, что и более дорогие аналоги.

Пищеварительные ферменты – это вещества белковой природы, которые вырабатываются в желудочно-кишечном тракте. Они обеспечивают процесс переваривания пищи и стимулируют ее усвоение.

Основной функцией пищеварительных ферментов является разложение сложных веществ на более простые, которые легко усваиваются в кишечнике человека.

Действие белковых молекул направлено на следующие группы веществ:

  • белки и пептиды;
  • олиго- и полисахариды;
  • жиры, липиды;
  • нуклеотиды.

Виды ферментов

  1. Пепсин. Фермент представляет собой вещество, которое вырабатывается в желудке. Он воздействует на белковые молекулы в составе пищи, разлагая их на элементарные составляющие – аминокислоты.
  2. Трипсин и химотрипсин. Эти вещества входят в группу панкреатических ферментов, которые вырабатываются поджелудочной железой и доставляются в двенадцатиперстный кишечник. Здесь они также воздействуют на белковые молекулы.
  3. Амилаза. Фермент относится к веществам, разлагающим сахара (углеводы). Амилаза вырабатывается в ротовой полости и в тонком кишечнике. Она разлагает один из главных полисахаридов – крахмал. В результате получается небольшой углевод – мальтоза.
  4. Мальтаза. Фермент также воздействует на углеводы. Его специфическим субстратом является мальтоза. Она разлагается на 2 молекулы глюкозы, которые всасываются стенкой кишечника.
  5. Сахараза. Белок воздействует на другой распространенный дисахарид — сахарозу, которая содержится в любой высокоуглеводной пище. Углевод распадается на фруктозу и глюкозу, легко усваивающиеся организмом.
  6. Лактаза. Специфический фермент, который воздействует на углевод из молока – лактозу. При ее разложении получаются другие продукты – глюкоза и галактоза.
  7. Нуклеазы. Ферменты из данной группы воздействуют на нуклеиновые кислоты – ДНК и РНК, которые содержатся в пище. После их воздействия вещества распадаются на отдельные составляющие – нуклеотиды.
  8. Нуклеотидазы. Вторая группа ферментов, которая воздействует на нуклеиновые кислоты, называется нуклеотидазами. Они разлагают нуклеотиды с получением более мелких составляющих – нуклеозидов.
  9. Карбоксипептидаза. Фермент воздействует на небольшие белковые молекулы – пептиды. В результате такого процесса получаются отдельные аминокислоты.
  10. Липаза. Вещество разлагает жиры и липиды, поступающие в пищеварительную систему. При этом образуются их составные части – спирт, глицерин и жирные кислоты.

Недостаток пищеварительных ферментов

Недостаточная выработка пищеварительных ферментов – это серьезная проблема, которая требует врачебного вмешательства. При небольшом количестве эндогенных энзимов пища не сможет нормально перевариваться в кишечнике человека.

Если вещества не перевариваются, то они не могут всасываться в кишечнике. Пищеварительная система способна усвоить только небольшие фрагменты органических молекул. Большие компоненты, которые входят в состав еды, не смогут принести пользу человеку. Вследствие этого в организме может развиться недостаточность тех или иных веществ.

Нехватка углеводов или жиров приведет к тому, что организм лишится «топлива» для активной деятельности. Недостаточность белков лишает тело человека строительного материала, которым являются аминокислоты. Кроме того, нарушение пищеварения приводит к изменению характера кала, которое может неблагоприятно влиять на характер .

Причины

  • воспалительные процессы в кишечнике и желудке;
  • нарушения характера питания (переедание, недостаточная термическая обработка);
  • болезни обмена веществ;
  • панкреатит и другие болезни поджелудочной железы;
  • поражение печени и желчных путей;
  • врожденные патологии ферментной системы;
  • послеоперационные последствия (недостаточность энзимов из-за удаления части пищеварительной системы);
  • лекарственные воздействия на желудок и кишечник;
  • беременность;

Симптомы

Длительное сохранение недостаточности пищеварения сопровождается появлением общих симптомов, связанных с пониженным поступлением питательных веществ в организм. В данную группу входят следующие клинические проявления:

  • общая слабость;
  • снижение работоспособности;
  • головные боли;
  • нарушения сна;
  • повышенная раздражительность;
  • в тяжелых случаях – симптомы анемии из-за недостаточного усвоения железа.

Избыток пищеварительных ферментов

Избыток пищеварительных ферментов наиболее часто наблюдается при таком заболевании, как панкреатит. Состояние связано с гиперпродукцией этих веществ клетками поджелудочной железы и нарушением их выведения в кишечник. В связи с этим развивается активное воспаление в ткани органа, вызванное воздействием ферментов.

Признаками панкреатита могут быть:

  • сильные боли в области живота;
  • тошнота;
  • вздутие;
  • нарушение характера стула.

Часто развивается общее ухудшение состояния больного. Появляется общая слабость, раздражительность, снижается масса тела, нарушается нормальный сон.

Как выявить нарушения в синтезе пищеварительных ферментов?

Основные принципы терапии ферментных нарушений

Изменение выработки пищеварительных ферментов является поводом для обращения к врачу. После проведения комплексного обследования доктор определит причину возникновения нарушений и назначит соответствующее лечение. Самостоятельно бороться с патологией не рекомендуется.

Важным компонентом лечения является правильное питание. Больному назначается соответствующая диета, которая направлена на облегчение переваривания пищи. Необходимо избегать переедания, так как это провоцирует кишечные расстройства. Пациентам назначается лекарственная терапия, в том числе и заместительное лечение .

Конкретные средства и их дозировки подбираются врачом.

органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты (от лат. fermentum - брожение, закваска) иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л.Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э.Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж.Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать «универсальные» ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.

Ферменты и пищеварение . Ферменты - необходимые участники процесса пищеварения. Только низкомолекулярные соединения могут проходить через стенку кишечника и попадать в кровоток, поэтому компоненты пищи должны быть предварительно расщеплены до небольших молекул. Это происходит в ходе ферментативного гидролиза (расщепления) белков до аминокислот, крахмала до сахаров, жиров до жирных кислот и глицерина. Гидролиз белков катализирует фермент пепсин, содержащийся в желудке. Ряд высокоэффективных пищеварительных ферментов секретирует в кишечник поджелудочная железа. Это трипсин и химотрипсин, гидролизующие белки; липаза, расщепляющая жиры; амилаза, катализирующая расщепление крахмала. Пепсин, трипсин и химотрипсин секретируются в неактивной форме, в виде т.н. зимогенов (проферментов), и переходят в активное состояние только в желудке и кишечнике. Это объясняет, почему указанные ферменты не разрушают клетки поджелудочной железы и желудка. Стенки желудка и кишечника защищает от пищеварительных ферментов и слой слизи. Некоторые важные пищеварительные ферменты секретируются клетками тонкого кишечника.

Большая часть энергии, запасенной в растительной пище, такой, как трава или сено, сосредоточена в целлюлозе, которую расщепляет фермент целлюлаза. В организме травоядных животных этот фермент не синтезируется, и жвачные, например крупный рогатый скот и овцы, могут питаться содержащей целлюлозу пищей только потому, что целлюлазу вырабатывают микроорганизмы, заселяющие первый отдел желудка - рубец. С помощью микроорганизмов происходит переваривание пищи и у термитов.

Ферменты находят применение в пищевой, фармацевтической, химической и текстильной промышленности. В качестве примера можно привести растительный фермент, получаемый из папайи и используемый для размягчения мяса. Ферменты добавляют также в стиральные порошки.

Ферменты в медицине и сельском хозяйстве . Осознание ключевой роли ферментов во всех клеточных процессах привело к широкому их применению в медицине и сельском хозяйстве. Нормальное функционирование любого растительного и животного организма зависит от эффективной работы ферментов. В основе действия многих токсичных веществ (ядов) лежит их способность ингибировать ферменты; таким же эффектом обладает и ряд лекарственных препаратов. Нередко действие лекарственного препарата или токсичного вещества можно проследить по его избирательному влиянию на работу определенного фермента в организме в целом или в той или иной ткани. Например, мощные фосфорорганические инсектициды и нервно-паралитические газы, разработанные в военных целях, оказывают свой губительный эффект, блокируя работу ферментов - в первую очередь холинэстеразы, играющей важную роль в передаче нервного импульса.

Чтобы лучше понять механизм действия лекарственных препаратов на ферментные системы, полезно рассмотреть, как работают некоторые ингибиторы ферментов. Многие ингибиторы связываются с активным центром фермента - тем самым, с которым взаимодействует субстрат. У таких ингибиторов наиболее важные структурные особенности близки к структурным особенностям субстрата, и если в реакционной среде присутствуют и субстрат и ингибитор, между ними наблюдается конкуренция за связывание с ферментом; при этом чем больше концентрация субстрата, тем успешнее он конкурирует с ингибитором. Ингибиторы другого типа индуцируют в молекуле фермента конформационные изменения, в которые вовлекаются важные в функциональном отношении химические группы. Изучение механизма действия ингибиторов помогает химикам создавать новые лекарственные препараты.

НЕКОТОРЫЕ ФЕРМЕНТЫ И КАТАЛИЗИРУЕМЫЕ ИМИ РЕАКЦИИ

Тип химической реакции

Фермент

Источник

Катализируемая реакция 1)

Гидролиз Трипсин Тонкий кишечник Белки + H 2 O ® Разные полипептиды
Гидролиз b -Амилаза Пшеница, ячмень, батат и т.д. Крахмал + H 2 O ® Гидролизат крахмала + Мальтоза
Гидролиз Тромбин Кровь Фибриноген + H 2 O ® Фибрин + 2 Полипептида
Гидролиз Липазы Кишечник, семена с большим содержанием жиров, микроорганизмы Жиры + H 2 O ® Жирные кислоты + Глицерин
Гидролиз Щелочная фосфатаза Почти все клетки Органические фосфаты + H 2 O ® Дефосфорилированный продукт + Неорганический фосфат
Гидролиз Уреаза Некоторые растительные клетки и микроорганизмы Мочевина + H 2 O ® Аммиак + Диоксид углерода
Фосфоролиз Фосфорилаза Ткани животных и растений, содержащие полисахариды Полисахарид (крахмал или гликоген из n молекул глюкозы) + Неорганический фосфат Глюкозо-1-фосфат + Полисахарид (n – 1 глюкозных единиц)
Декарбоксилирование Декарбоксилаза Дрожжи, некоторые растения и микроорганизмы Пировиноградная кислота ® Ацетальдегид + Диоксид углерода
Конденсация Альдолаза 2 Триозофосфата Гексозодифосфат
Конденсация Оксалоацетат-трансаце- тилаза То же Щавелевоуксусная кислота + Ацетил- кофермент А Лимонная кислота + Кофермент А
Изомеризация Фосфогексозоизомераза То же Глюкозо-6-фосфат Фруктозо-6-фосфат
Гидратация Фумараза То же Фумаровая кислота + H 2 O Яблочная кислота
Гидратация Карбоангидраза Разные ткани животных; зеленые листья Диоксид углерода + H 2 O Угольная кислота
Фосфорилирование Пируваткиназа Почти все (или все) клетки АТФ + Пировиноградная кислота Фосфоенолпировиноградная кислота + АДФ
Перенос фосфатной группы Фосфоглюкомутаза Все животные клетки; многие растения и микроорганизмы Глюкозо-1-фосфат Глюкозо-6- фосфат
Переаминирование Трансаминаза Большинство клеток Аспарагиновая кислота + Пировино- градная кислота Щавелевоуксусная кислота + Аланин
Синтез, сопряженный с гидролизом АТФ Глутаминсинтетаза То же Глутаминовая кислота + Аммиак + АТФ Глутамин + АДФ + Неорганический фосфат
Окисление-восстановление Цитохромоксидаза Все животные клетки, многие растения и микроорганизмы O 2 + Восстановленный цитохром c ® Окисленный цитохром c + H 2 O
Окисление-восстановление Оксидаза аскорбиновой кислоты Многие растительные клетки Аскорбиновая кислота + O 2 ® Дегидроаскорбиновая кислота + Пероксид водорода
Окисление-восстановление Цитохром c редуктаза Все животные клетки; многие растения и микроорганизмы НАД ·Н (восстановленный кофермент) + Окисленный цитохром c ® Восстановленный цитохром c + НАД (окисленный кофермент)
Окисление-восстановление Лактатдегидрогеназа Большинство животных кле - ток; некоторые растения и микроорганизмы Молочная кислота + НАД (окисленный кофермент) Пировиноградная кислота + НАД ·Н (восстановленный кофермент)
1) Одинарная стрелка означает, что реакция идет фактически в одну сторону, а двойные стрелки – что реакция обратима.

ЛИТЕРАТУРА

Фёршт Э. Структура и механизм действия ферментов . М., 1980
Страйер Л. Биохимия , т. 1 (с. 104-131), т. 2 (с. 23-94). М., 1984-1985
Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохомия человека , т. 1. М., 1993

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

биологический фермент белковый

Насколько мы знаем в нашем организме действует очень много ферментов, которые способствуют осуществлению обменных процессов (дыхание, пищеварение, мышечное сокращение, фотосинтез), которые и определяют сам процесс жизни. Поэтому препараты стали широко применяться при лечении заболеваний, сопровождающихся гнойно-некротическими процессами, при тромбозах и тромбоэмболиях, нарушениях процессов пищеварения. Ферментные препараты стали находить также применение при лечении онкологических заболеваний.

Ферменты играют довольно важную роль и в проведении многих технологических процессов. Ферменты высокого качества позволяют улучшить технологию, сократить затраты и даже получить новые продукты.

В настоящее время ферменты применяются более чем в 25 отраслях промышленности: это и пищевая промышленность, и фармацевтическая, целлюлозно-бумажная, лёгкая, а так же в сельском хозяйстве.

Целью моего реферата является: подробное исследование понятий фермента и ферментативного катализа (биокатализа).

1) Что же такое ферменты, какую роль они играют?

2) Структура и механизм действия ферментов.

3) Рассмотреть функции ферментов.

4) Принцип действия ферментов.

5) Классификация ферментов.

6) Область применения ферментов.

7) Методы выделения ферментов.

8) Факторы, влияющие на реакции фермента?

1. Что же такое ферменты, какую роль они играют?

Ферменты - это органические вещества белковой природы, которые синтезируются в клетках и во много раз ускоряют протекающие в них реакции, не подвергаясь при этом химическим превращениям. Вещества, оказывающие подобное действие, существуют и в неживой природе и называются катализаторами. Ферменты иногда называют энзимами (от греч. en - внутри, zyme - закваска). Все живые клетки содержат очень большой набор ферментов, от каталитической активности которых зависит функционирование клеток. Практически каждая из множества разнообразных реакций, протекающих в клетке, требует участия специфического фермента. Изучением химических свойств ферментов и катализируемых ими реакций занимается особая, очень важная область биохимии - энзимология.

Многие ферменты находятся в клетке в свободном состоянии, будучи просто растворены в цитоплазме; другие связаны со сложными высокоорганизованными структурами. Есть и ферменты, в норме находящиеся вне клетки; так, ферменты, катализирующие расщепление крахмала и белков, секретируются поджелудочной железой в кишечник. Секретируют ферменты и многие микроорганизмы.

Первые данные о ферментах были получены при изучении процессов брожения и пищеварения. Большой вклад в исследование брожения внес Л. Пастер, однако он полагал, что соответствующие реакции могут осуществлять только живые клетки. В начале 20 в. Э. Бухнер показал, что сбраживание сахарозы с образованием диоксида углерода и этилового спирта может катализироваться бесклеточным дрожжевым экстрактом. Это важное открытие послужило стимулом к выделению и изучению клеточных ферментов. В 1926 Дж. Самнер из Корнеллского университета (США) выделил уреазу; это был первый фермент, полученный в практически чистом виде. С тех пор обнаружено и выделено более 700 ферментов, но в живых организмах их существует гораздо больше. Идентификация, выделение и изучение свойств отдельных ферментов занимают центральное место в современной энзимологии.

Ферменты, участвующие в фундаментальных процессах превращения энергии, таких, как расщепление сахаров, образование и гидролиз высокоэнергетического соединения аденозинтрифосфата (АТФ), присутствуют в клетках всех типов - животных, растительных, бактериальных. Однако есть ферменты, которые образуются только в тканях определенных организмов. Так, ферменты, участвующие в синтезе целлюлозы, обнаруживаются в растительных, но не в животных клетках. Таким образом, важно различать «универсальные» ферменты и ферменты, специфичные для тех или иных типов клеток. Вообще говоря, чем более клетка специализирована, тем больше вероятность, что она будет синтезировать набор ферментов, необходимый для выполнения конкретной клеточной функции.

На сегодняшний день известно свыше 3000 ферментов. Все они обладают рядом специфических свойств, отличающих их от неорганических катализаторов. Только в человеческом организме ежесекундно происходят тысячи ферментативных реакций. Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Нужно также отметить, что вся живая природа существует исключительно благодаря биокатализу. Недаром великий русский физиолог, нобелевский лауреат И.П. Павлов назвал ферменты носителями жизни.

2. Структура и механизм действия ферментов

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата.

Рис. 1. Строение фермента

3. Функции ферментов

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ(субстратов) в другие (продукты) .

Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах - ими катализируется более 4000 разных биохимических реакций.

Ферменты играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону.

Отличительной особенностью ферментов по сравнению с небелковыми катализаторами является их высокая специфичность - константа связывания некоторых субстратов с белком может достигать 10? 10 моль/л и менее. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка теленка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37°C.

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов - ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы - в сотни и тысячи раз.

4. Принцип действия ферментов

Вещество, подвергающееся превращению в присутствии фермента, называют субстратом. Субстрат присоединяется к ферменту, который ускоряет разрыв одних химических связей в его молекуле и создание других; образующийся в результате продукт отсоединяется от фермента.

Ферменты не подвергаются износу во время реакции. Они высвобождаются по завершению реакции и сразу же готовы начать следующую реакцию. Теоретически это может продолжаться бесконечно, по крайней мере, до тех пор, пока они не израсходуют весь субстрат. На практике вследствие их восприимчивости и органического состава, продолжительность существования ферментов ограничена.

По образному выражению, употребляемому в биохимической литературе, фермент подходит к субстрату, как «ключ к замку». Это правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента. Фермент соединяется с субстратом с образованием короткоживущего фермент-субстратного комплекса (образования промежуточного комплекса). Однако, хотя эта модель объясняет высокую специфичность ферментов, она не объясняет явления стабилизации переходного состояния, которое наблюдается на практике. В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выряжено формулой «перчатка-рука». Ферменты, в основном, - не жесткие, а гибкие молекулы. Активный центр фермента может изменить конформацию после связывания субстрата. Боковые группы аминокислот активного центра принимают такое положение, которое позволяет ферменту выполнить свою каталитическую функцию. В некоторых случаях молекула субстрата также меняет конформацию после связывания в активном центре. В отличие от модели «ключ-замок», модель индуцированного соответствия объясняет не только специфичность ферментов, но и стабилизацию переходного состояния.

Но в процессе всё большего развития науки гипотеза Кошланда постепенно вытесняется гипотезой топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.

5. Классификация ферментов

Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:

Ш Ферменты, катализирующие окислительно-восстановительные реакции оксидоредуктазы;

Ш Ферменты переноса различных группировок (метильных, амино- и фосфогрупп и другие) - трансферазы.

Ш Ферменты, осущевствляющие гидролиз химических связей - гидролазы

Ш Ферменты не гидролитического отщепления от субстрата различных группировок (NH3, CO2, H2O и другие) - лиазы.

Ш Ферменты, ускоряющие синтез связей в биологических молекулах при участии доноторов энергии, например АТФ, - лигазы.

Ш Ферменты, катализирующие превращение изомеров друг в друга, - изомеразы.

Оксидоредуктазы - это ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН - NH группу, C-NH группу и другие).

Трансферазы - это ферменты, переносящие атомные группы (в зависимости от того, перенос какой группы они осуществляют, их соответственно называют). Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.

Гидролазы - это ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далее; гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие.

Лиазы - к этой группе относятся ферменты, способные отщеплять различные группы от субстрата не гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки - например ацетил - СоА. Лиазы играют весьма важную роль в процессе обмена веществ.

Изомеразы - ферменты, катализирующие превращение изомерных форм друг в друга, то - есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы.

Лигазы. Раньше эти ферменты не отделяли от лиаз, так как реакция последних часто идёт в двух направлениях, однако недавно было выяснено, что синтез и распад в большинстве случаев происходит под влиянием различных ферментов, и на этом основании выделен отдельный класс лигаз (синтетаз). Ферменты, обладающие двойным действием, получили название бифункциональных. Лигазы принимают участие в реакции соединения двух молекул, то есть синтетических процессах, сопровождающихся расщеплением макроэнергитических связей АТФ или других макроэргов.

«Первое подразделение ферментов на самые крупные группы (6 классов) основано не на названии субстрата, а на природе химической реакции, которую фермент катализирует. Далее, внутри классов ферменты делят на подклассы, руководствуясь строением субстрата. В подклассы объединяют ферменты данного класса, действующие на сходно построенные субстраты. На этом деление не заканчивается. Ферменты каждого подкласса разбивают на подклассы, в которых ещё строже уточняют структуру химических групп, отличающих субстраты друг от друга. Подкласс это последняя низшая ступень классификации. Внутри подклассов перечисляют уже отдельные ферменты.

6. Область применения ферментов

Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют свою активность не только в микропространстве клетки, но и вне организма. Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезамини-рование, декарбоксилирование, дегидратация, конденсация, а также для разделения и выделения изомеров аминокислот L-ряда (при химическом синтезе образуются рацемические смеси L- и D-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромных количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом. В настоящее время развивается новая отрасль науки - промышленная энзимология, являющаяся основой биотехнологии. Фермент, ковалентно присоединенный («пришитый») к любому органическому или неорганическому полимерному носителю (матрице), называют иммобилизованным. Техника иммобилизации ферментов допускает решение ряда ключевых вопросов энзимологии: обеспечение высокой специфичности действия ферментов и повышения их стабильности, простоту в обращении, возможность повторного использования, применение их в синтетических реакциях в потоке. Применение подобной техники в промышленности получило название инженерной энзимологии. Ряд примеров свидетельствует об огромных возможностях инженерной энзимологии в различных областях промышленности, медицины, сельского хозяйства. В частности, иммобилизованную в-галактозидазу, присоединенную к магнитному стержню-мешалке, используют для снижения содержания молочного сахара в молоке, т.е. продукта, который не расщепляется в организме больного ребенка с наследственной непереносимостью лактозы. Обработанное таким образом молоко, кроме того, хранится в замороженном состоянии значительно дольше и не подвергается загустеванию. Разработаны проекты получения пищевых продуктов из целлюлозы, превращения ее с помощью иммобилизованных ферментов - целлюлаз - в глюкозу, которую можно превратить в пищевой продукт - крахмал. С помощью ферментной технологии в принципе можно также получить продукты питания, в частности углеводы, из жидкого горючего (нефти), расщепив его до глицеральдегида, и далее при участии ферментов синтезировать из него глюкозу и крахмал. Несомненно, имеет большое будущее моделирование при помощи инженерной энзимологии процесса фотосинтеза, т.е. природного процесса фиксации СО2; помимо иммобилизации, этот жизненно важный для всего человечества процесс потребует разработки новых оригинальных подходов и применения ряда специфических иммобилизованных коферментов. В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе (Рис. 2). В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД+ и две НАД-зависимые дегидрогеназы: лактат- и аланиндегидрогеназы; с противоположного конца реактора продукт реакции - аланин - удаляется с заданной скоростью.

Рис. 2. Схема непрерывного процесса получения аминокислоты

Подобные реакторы нашли применение в фармацевтической промышленности, например при синтезе из гидрокортизона антиревматоидного препарата преднизолона. Кроме того, они могут служить моделью для применения с целью синтеза и получения незаменимых факторов, поскольку при помощи иммобилизованных ферментов и коферментов можно направленно осуществлять сопряженные химические реакции (включая биосинтез незаменимых метаболитов), устраняя тем самым недостаток в веществах при наследственных пороках обмена. Таким образом, при помощи нового методологического подхода наука делает свои первые шаги в области «синтетической биохимии». Не менее важными направлениями исследований являются иммобилизация клеток и создание методами генотехники (генного инженерного конструирования) промышленных штаммов микроорганизмов - продуцентов витаминов и незаменимых аминокислот. В качестве примера медицинского применения достижений биотехнологии можно привести иммобилизацию клеток щитовидной железы для определения тиреотропного гормона в биологических жидкостях или тканевых экстрактах. На очереди - создание биотехнологического способа получения некалорийных сластей, т.е. пищевых заменителей сахара, которые могут создавать ощущение сладости, не будучи высококалорийными. Одно из подобных перспективных веществ - аспартам, который представляет собой метиловый эфир дипептида - аспартилфенилаланина (см. ранее). Аспартам почти в 300 раз слаще сахара, безвреден и в организме расщепляется на естественно встречающиеся свободные аминокислоты: аспарагиновую кислоту (аспар-тат) и фенилаланин. Аспартам, несомненно, найдет широкое применение как в медицине, так и в пищевой промышленности (в США, например, его используют для детского питания и добавляют вместо сахара в диетическую кока-колу). Для производства аспартама методами генотехники необходимо получить не только свободную аспарагиновую кислоту и фе-нилаланин (предшественники), но и бактериальный фермент, катализирующий биосинтез этого дипептида. Значение инженерной энзимологии, как и вообще биотехнологии, возрастет в будущем. По подсчетам специалистов, продукция всех биотехнологических процессов в химической, фармацевтической, пищевой промышленности, в медицине и сельском хозяйстве, полученная в течение одного года в мире, будет исчисляться десятками миллиардов долларов к 2000 г. В нашей стране уже к 2000 г. будет налажено получение методами генной инженерии L-треонина и витамина В2. Уже к 1998 г. предполагается производство ряда ферментов, антибиотиков, б1-, в-, г-интерферонов; проходят клинические испытания препараты инсулина и гормона роста. Гибридомной техникой в стране налажен выпуск реактивов для иммуноферментных методов определения многих химических компонентов в биологических жидкостях.

7. Методы выделения ферментов

Процесс выделения какого-либо белка начинается с переведения белков ткани в раствор. Для этого ткань (материал), из которой получают фермент, тщательно измельчают в гомогенизаторе в присутствии буферного раствора. Для лучшего разрушения клеток к материалу добавляют кварцевый песок, если материал растирают в ступке. В результате получают кашицу - гомогенат. Если не проводилось предварительное фракционирование органоидов клетки, гомогенат содержит обрывки клеток, ядра, хлоропласты и другие органоиды клеток, растворимые пигменты и белки.

При выделении ферментов из тканей живых организмов, в том числе растительных, необходимо соблюдать условия, не вызывающие денатурацию белка. Все работы проводят при пониженной температуре (40 С) и при оптимальных для данного фермента значениях pH среды буферного раствора.

После перевода ферментов из ткани в растворенное состояние гомогенат подвергают центрифугированию для отделения нерастворимой части материала, а затем в отдельных фракциях экстрата-центрифугата выделяют следуемые ферменты.

Так как все ферменты являются белками, то для получения очищенных препаратов ферментов применяются те же способы выделения, что и при работе с белками.

Методы выделения:

· осаждение белка органическими растворителями;

· высаливание;

· метод электрофореза;

· метод ионообменной хроматографии;

· метод центрифугирования;

· метод гельфильтрации;

· метод аффинной хроматографии, или метод хроматографии по сродству;

· избирательная денатурация.

8. Факторы, влияющие на реакции фермента

На активность ферментов, а следовательно и на скорость реакций ферментативного катализа оказывают влияние различные факторы:

Ш Концентрация и доступность субстрата. При постоянном количестве фермента скорость возрастает с увеличением концентрации субстрата. Эта реакция подчинена закону действующих масс и рассматривается в свете теории Михаэлиса - Ментона.

Ш Концентрация фермента. Концентрация ферментов всегда относительно невелика. Скорость любого ферментативного процесса в значительной степени зависит от концентрации фермента. Для большинства пищевых применений скорость реакций пропорциональна концентрации ферментов. Исключение составляют те случаи, когда реакции доводят до очень низких уровней субстрата.

Ш Температура реакции. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Самой оптимальной температурой является 37 o С, при которой в живом организме процессы протекают быстро, сберегая большое количество энергии. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина оптимум находится при 8О°С. В то же время у каталазы оптимальная температура действия находится между 0 и -10°С.

Ш рН реакции. Для каждого фермента характерна определённая область значения рН, при которых фермент проявляет максимальную активность. Однако наилучшими условиями их функционирования являются близкое к нейтральному значение величины рН. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты. Влияние рН среды на действия ферментов основано на том, что происходит изменение заряда различных групп белка в активном центре фермента, вызывающее существенное изменение конформации полипептидной цепи.

Ш Продолжительность процесса. Для реакции ферментативного катализа первого порядка скорость реакции со временем уменьшается, так как уменьшается доступность субстрата. Такие реакции ферментативного катализа требуют достаточно много времени для её завершения.

Ш Наличие ингибиторов или активаторов. Химические вещества, способные оказывать вредное воздействие на реакцию ферментации, получили названия «ингибиторы». В качестве таких веществ могут выступать металлы (медь, железо, кальций) или соединения из субстратов. Некоторые вещества способны активировать или стабилизировать ферменты. Присутствие в реакционной среде некоторых ионов может активировать образование активного субстрат ферментного комплекса, и в этом случае скорость ферментативной реакции будет увеличивается. Такие вещества получили название активаторов.

Заключение

В данном реферате мы рассмотрели одно из биологически активных веществ, а именно - ферменты. Ферменты являются биологическим катализатором белковой природы, ускоряющим химические реакции в живых организмов и вне их. Ферменты обладают уникальными свойствами, которые отличают их от обычных органических катализаторов. Это, прежде всего, необычно высокая каталитическая активность. Другое важнейшее свойство ферментов - это избирательность их действия.

Важным свойством ферментов, которое необходимо учитывать при их практическом пользовании, является стабильность, т.е. их способность сохранять каталитическую активность.

Благодаря высокой специфичности ферментов в организме не воцаряется хаос: каждый фермент выполняет строго отведённые ему функции, не влияя на течение многих десятков и сотен других реакций, происходящих в его окружении. Роль ферментов в жизнедеятельности организмов велика.

Будущее ферментов очень интересно. Технология обнаружения и производства новых ферментов развивается с большой скоростью. Прежде применение и производство ферментов развивалось большей частью за счет попыток и ошибок. Так как детали, влияющие на химию и действие ферментов, были известны плохо, то в препаратах использовались смеси наиболее универсальных ферментов. Благодаря новым исследованиям при производстве сбываемой продукции возможно использование более специфичных ферментов.

Сегодня развивающиеся технологии с каждым днем раскрывают все новые чудеса сотворения жизни, и «биомиметика» как наука избирает примерами превосходные системы в организмах живых существ, создавая по их образу и подобию изобретения для пользы и блага людей. Учёные попытаются найти химические аналоги ферментов и на их основе создать новые промышленные процессы.

Литература

1. «Биофизическая химия» / А.Г. Пасынский [Текст] -375 с.

2. Нечаев А.П., Кочеткова А.А, Зайцев А.Н. / Пищевые добавки [Текст] // М., 2001. - 232 с.

3. «Основы биохимии» / Г.А. Смирнова. [Текст] -278 с.

4. «Ферменты-двигатели жизни» / В.И. Розенгарт. [Текст] -378 с.

5. «Энциклопедический словарь юного биолога» / М.С. Гиляров. [Текст] -488 с.

Размещено на Allbest.ru

...

Подобные документы

    Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация , добавлен 19.10.2013

    Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация , добавлен 17.10.2012

    Химический состав, природа и структура белков. Механизм действия ферментов, виды их активирования и ингибирования. Современная классификация и номенклатура ферментов и витаминов. Механизм биологического окисления, главная цепь дыхательных ферментов.

    шпаргалка , добавлен 20.06.2013

    Исследование биологической роли ферментов в механизмах взаимодействия адренергической и пептидергической систем. Определение активности ферментов флюорометрическим методом. Изучение гипофиза, гипоталамуса, больших полушарий и четверохолмия самцов крыс.

    статья , добавлен 01.09.2013

    Определение ферментов как специфических белков, присутствующих во всех живых клетках биологических катализаторов. Пространственность структурной молекулы ферментов, процесс биосинтеза оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы и лигазы.

    контрольная работа , добавлен 27.01.2011

    Понятие ферментов как глобулярных белков, которые состоят из одной или нескольких полипептидных цепей. Особенности строения простых и сложных ферментов. Субстратный, аллостерический и каталитический центры в строении простых и сложных ферментов.

    презентация , добавлен 07.02.2017

    Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация , добавлен 28.11.2015

    Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.

    курсовая работа , добавлен 13.04.2009

    Характеристика биосинтеза как процесса образования органических веществ, происходящего в клетках с помощью ферментов и внутриклеточных структур. Участники биосинтеза белка. Синтез РНК с использованием ДНК в качестве матрицы. Роль и значение рибосом.

    презентация , добавлен 21.12.2013

    Ферменты, или энзимы - белковые молекулы или их комплексы, ускоряющие химические реакции в живых системах; коферменты и субстраты: история изучения, классификация, номенклатура, функции. Структура и механизм действия ферментов, их биомедицинское значение.

mob_info