Формула активной проводимости электрической цепи. Параллельное соединение

Активная проводимость (G ) обусловлена потерями активной мощности в диэлектриках. Ее величина зависит от:

    тока утечки по изоляторам (малы, можно пренебречь);

    потерь мощности на корону.

Активная проводимость приводит к потерям активной мощности в режиме холостого хода ВЛЭП. Потери мощности на корону ( кор) обусловлены ионизацией воздуха вокруг проводов. Когда напряжённость электрического поля у провода становится больше электрической прочности воздуха (21,2кВ/см), на поверхности провода образуются электрические разряды. Из-за неровностей поверхности многопроволочных проводов, загрязнений и заусениц разряды появляются вначале только в отдельных точках провода –местная корона . По мере повышения напряжённости корона распространяется на большую поверхность провода и в конечном счёте охватывает провод целиком по всей длине –общая корона .

Потери мощности на корону зависят от погодных условий. Наибольшие потери мощности на корону происходят при различных атмосферных осадках. Например, на воздушных ЛЭП напряжением 330750кВ кор при снеге повышаются на 14%, дожде – на 47%, изморози – на 107% по сравнению с потерями при хорошей погоде. Корона вызывает коррозию проводов, создаёт помехи на линиях связи и радиопомехи.

Величину потерь мощности на корону можно рассчитать по формуле:

где
коэффициент, учитывающий барометрическое давление;

U ф,U кор ф – соответственно фазные рабочее напряжение ЛЭП и напряжение, при котором возникает корона.

Начальная напряжённость (в хорошую погоду), при которой возникает общая корона рассчитывается по формуле Пика:

кВ/см

где m – коэффициент негладкости привода;

R пр – радиус провода,см ;

коэффициент, учитывающий барометрическое давление.

Для гладких цилиндрических проводов значение m = 1, для многопроволочных проводов –m = 0,820,92.

Величина δ рассчитывается по формуле:

,

где Р – давление, мм ртутного столба;

температура воздуха, 0 C.

При нормальном атмосферном давлении (760 мм рт. ст.) и температуре 20 0 C= 1. Для районов с умеренным климатом среднегодовое значениеравно 1,05.

Рабочая напряженность при нормальных условиях работы ЛЭП определяется по формулам:

    для нерасщепленной фазы

кВ/см

    для расщепленной фазы

, кВ/см

где U экс – среднее эксплуатационное (линейное) напряжение.

Если величина эксплуатационного напряжения неизвестна, то считают, что U экс =U ном.

Величина рабочей напряженности на фазах разная. В расчетах принимается величина наибольшей напряжённости:

E max =k расп k расщ E ,

где k расп – коэффициент, учитывающий расположение проводов на опоре;

k расщ – коэффициент, учитывающий конструкцию фазы.

Для проводов, расположенных в вершинах равностороннего треугольника или близкого к нему, k расп = 1. Для проводов, расположенных в горизонтально или вертикально,k расп = 1,05 – 1,07.

Для нерасщепленной фазы k расщ = 1. При расщепленной конструкции фазы коэффициентk расщ рассчитывается по формулам:

    при n = 2

    при n = 3

Напряжение, при котором возникает корона, рассчитывается по формуле:

Чтобы повысить U кор нужно снизитьE max . Для этого нужно увеличить либо радиус проводаR пр либо D ср. В первом случае эффективно расщеплять провода в фазе. УвеличениеD ср приводит к значительному изменению габаритов ЛЭП. Мероприятие малоэффективно, так какD ср находится под знаком логарифма.

Если E max >E 0 , то работа ЛЭП является неэкономичной из-за потерь мощности на корону. Согласно ПУЭ, корона на проводах отсутствует, если выполняется условие:

E max 0,9E 0 (m =0,82,= 1).

При проектировании выбор сечений проводов выполняют таким образом, чтобы короны в хорошую погоду, не было. Так как увеличение радиуса провода является основным средством снижения P кор, то установлены минимально допустимые сечения по условиям короны: при напряжении 110 кВ – 70мм 2 , при напряжении 150 кВ – 120мм 2 , при напряжении 220 кВ – 240мм 2 .

Величина погонной активной проводимости рассчитывается по формуле:

, См/км.

Активная проводимость участка сети находится следующим образом:

При расчете установившихся режимов сетей напряжением до 220кВ активная проводимость не учитывается – увеличение радиуса провода снижает потери мощности на корону практически до нуля. При U ном 330кВ увеличение радиуса провода приводит к значительному удорожанию ЛЭП. Поэтому в таких сетях расщепляют фазу и учитывают в расчетах активную проводимость.

В кабельных ЛЭП расчет активной проводимости выполняется по тем же формулам, что и для воздушной ЛЭП. Природа потерь активной мощности иная.

В кабельных линиях P вызываются явлениями, происходящими в кабеле за счет тока абсорбции. Для КЛЭП диэлектрические потери указываются заводом – изготовителем. Диэлектрические потери в КЛЭП учитываются при U35 кВ.

Реактивная (ёмкостная проводимость)

Реактивная проводимость обусловлена наличием емкости между фазами и между фазами и землей, так как любую пару проводов можно рассматривать как конденсатор.

Для ВЛЭП величина погонной реактивной проводимости рассчитывается по формулам:

    для нерасщепленных проводов

, См/км;

    для расщеплённых проводов

Расщепление увеличивает b 0 на 2133%.

Для КЛЭП величина погонной проводимости чаще рассчитывается по формуле:

b 0 = C 0 .

Величина емкости C 0 приводится в справочной литературе для различных марок кабеля.

Реактивная проводимость участка сети рассчитывается по формуле:

В = b 0 l .

У воздушных ЛЭП значение b 0 значительно меньше, чем у кабельных ЛЭП, мало, так как D ср ВЛЭП >> D ср КЛЭП.

Под действием напряжения в проводимостях протекает ёмкостный ток (ток смещения или зарядный ток):

I c =В U ф.

Величина этого тока определяет потери реактивной мощности в реактивной проводимости или зарядную мощность ЛЭП:

В районных сетях зарядные токи соизмеримы с рабочими токами. При U ном = 110 кВ, величина Q с составляет около 10% от передаваемой активной мощности, при U ном = 220 кВ – Q с ≈ 30% Р . Поэтому ее нужно учитывать в расчетах. В сети номинальным напряжением до 35 кВ величиной Q с можно пренебречь.

Схема замещения ЛЭП

Итак, ЛЭП характеризуется активным сопротивлением R л, реактивным сопротивлением линии х л, активной проводимостью G л, реактивной проводимостью В л. В расчетах ЛЭП может быть представлена симметричными П- и Т- образными схемами (рис. 4.6).

П – образная схема применяется чаще.

В зависимости от класса напряжения теми или иными параметрами полной схемы замещения можно пренебречь (см. рис. 4.7):

    ВЛЭП напряжением до 220 кВ (Р кор  0);

    ВЛЭП напряжением до 35кВ (Р кор  0, Q c  0);

    КЛЭП напряжением 35кВ (реактивное сопротивление  0)

    КЛЭП напряжением 20 кВ (реактивное сопротивление  0, диэлектрические потери  0);

    КЛЭП напряжением до 10 кВ (реактивное сопротивление  0, диэлектрические потери  0, Q c  0).

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью .
Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью ; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью ;

Из () и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

где


и называются соответственно
активной, индуктивной и емкостной проводимостями .
Реактивная проводимость


Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .


Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно
При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().
Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных
L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.
Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.
Заметим, что обозначения
применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

При анализе и расчете разветвленных цепей переменного тока удобнее использовать не сопротивления отдельных ветвей, а их проводимости.

Предположим, что в состав разветвленной цепи входит ветвь с последовательным соединением активного R , индуктивного X L и емкостного Х с сопротивлений (рис. 2.17).

При построении векторной диаграммы ток / ветви разложим на составляющие :

  • активную составляющую / а, совпадающую с напряжением U по фазе;
  • индуктивную составляющую I L , отстающую по фазе от напряжения U на угол я/2;
  • емкостную составляющую / с, опережающую напряжение по фазе на угол я/2.

Рис. 2.17.

Рис. 2.18.

Рис. 2.19.

Рис. 2.20.

В качестве базисного вектора примем вектор напряжения U, как величины, общей для всех ветвей цепи (рис. 2.18). При построении диаграммы принято, что

Выделим из векторной диаграммы треугольник ОАВ. Этот треугольник называется треугольником токов (рис. 2.19). Вектор АВ называется реактивной составляющей токов:

Из треугольника токов получается соотношение между током / цепи и его составляющими:

Разделив все стороны треугольника токов на напряжение U, получим треугольник проводимостей (рис. 2.20). В этом треугольнике G = / а / U - активная проводимость, B L = I L /U - индуктивная проводимость, В с = Iq/U - емкостная проводимость, Y = I/U - полная проводимость. Разность индуктивной и емкостной проводимостей называется реактивной проводимостью:

Из треугольника проводимостей получаются следующие расчетные выражения:

Таким образом, ветвь схемы (рис. 2.17), состоящей из последовательно соединенных сопротивлений R, X L и Х с, может быть заменена параллельным соединением проводимостей G, В^ и В с (рис. 2.21).

Обе схемы равноценны, т. е. эквивалентны. Схемы называются эквивалентными, если при подведении к ним напряжения ток / в разветвленной части цепи обеих схем одинаков, сдвиг по фазе между напряжением и током один и тот же по величине и знаку.

Установим связь между сопротивлениями и проводимостями рассматриваемой ветви. Для схемы, изображенной на рис. 2.17:

Для схемы, изображенной на рис. 2.21:

Из сопоставления выражений для тока следует, что полная проводимость Y равна обратной величине полного сопротивления:

Подставив в выражения для активной и реактивной проводимостей значения Y, sin ср и cos ср, получим формулы преобразования последовательного соединения в параллельное:

Аналогичным образом можно получить формулы преобразования параллельного соединения в последовательное:


Рис. 2.21.

Следует иметь в виду, что обратными друг другу являются только полное сопротивление Z и полная проводимость 7; активное и реактивное сопротивления и проводимость не являются обратными величинами.

Полученные формулы могут быть использованы при расчете разветвленных цепей.

Пример 2.8. К линии электропередачи (рис. 2.22), имеющей активное сопротивление R = 4 Ом и индуктивное сопротивление X = 3 Ом подключены приемники. Параметры приемников: R = 7 Ом, Х= 24 Ом, R = 16 Ом; Х= 12 Ом. Напряжение на приемниках 17= 220 В.

Определить ток в линии и напряжение в ее начале.

Решение. Активные и реактивные проводимости приемников:

Активные и реактивные составляющие токов приемников:

Активная составляющая тока линии равна арифметической сумме активных составляющих токов приемников:


Рис. 2.22.

Реактивная составляющая тока линии равна алгебраической сумме реактивных составляющих токов приемников (индуктивным токам приписывают положительный знак, емкостным - отрицательный):

Ток линии:

Эквивалентная активная проводимость приемников

Эквивалентная реактивная проводимость приемников

Эквивалентное активное сопротивление приемников

Эквивалентное реактивное сопротивление (имеющее емкостный характер, так как В пр является емкостной)

Эквивалентное сопротивление всей цепи:

Напряжение в начале линии:

Решение получилось довольно громоздким. Поэтому метод проводимостей применяется лишь при расчете сравнительно простых цепей, например, только при параллельном соединении сопротивлений. Для расчета более сложных цепей применяется символический метод расчета, суть которого будет рассмотрена далее.

Вопросы для самопроверки

  • 1. Что означают понятия «активная составляющая тока» и «реактивная составляющая тока»?
  • 2. Какие отношения можно записать для треугольников токов и проводимостей?
  • 3. Являются ли проводимости и соответствующие сопротивления величинами, обратными друг другу?
  • 4. Какие существуют простейшие схемы замещения электрических приемников? Когда и какой из них целесообразнее воспользоваться?
  • 5. Какие существуют зависимости между сопротивлениями и проводимостями?
  • Физически ток не имеет составляющих: по всем элементам ветви протекает один и тотже ток. Однако с целью упрощения анализов и расчетов электрических цепей целесообразноток раскладывать на условные составляющие.

Проводимости

Комплексной проводимостью называется отношение комплексного тока к комплексному напряжению

где y=1/z - величина обратная полному сопротивлению, называется полной проводимостью.

Комплексная проводимость и комплексное сопротивление взаимно обратны. Комплексную проводимость можно представить в виде

где - действительная часть комплексной проводимости, называется активной проводимостью; - значение мнимой части комп-лексной проводимости, называется реактивной проводимостью;

Из (3.30) и ( 3.29) следует, что для схемы, представленной на рис. 3.12 , комплексная проводимость

и называются соответственно активной, индуктивной и емкостной проводимостями.

Реактивная проводимость

Индуктивная и емкостная проводимости - арифметические величины, а реактивная проводимость b - алгебраическая величина и может быть как больше, так и меньше нуля. Реактивная проводимость b ветви, содержащей только индуктивность, равна индуктивной проводимости , а реактивная проводимость b ветви, содержащей только емкость, равна емкостной проводимости с обратным знаком, т. е. .

Сдвиг по фазе между напряжением и током зависит от соотношения индуктивной и емкостной проводимостей. Для схемы по рис. 3.12 на рис. 3.14 представлены векторные диаграммы для трех случаев, а именно При построении этих диаграмм начальная фаза напряжения принята равной нулю, поэтому , как это следует из ( 3.28), равны и противоположны по знаку ().

Рассматривая схему на рис. 3.12 в целом как пассивный двухполюсник, можно заметить, что при заданной частоте она эквивалентна в первом случае параллельному соединению сопротивления и индуктивности, во втором - сопротивлению и в третьем - параллельному соединению сопротивления и емкости. Второй случай называется резонансом. При заданных L и С соотношение между зависит от частоты, а поэтому от частоты зависит и вид эквивалентной схемы.

Обратим внимание на то, что в схеме рис. 3.12 каждая из параллельных ветвей содержит по одному элементу. Поэтому получилось такое простое выражение для У, в которое проводимости элементов входят как отдельные слагаемые.

Заметим, что обозначения применяются не только для сопротивлений и проводимостей, но и для элементов схемы, характеризуемых этими величинами. В таких случаях элементам схемы дают те же самые наименования, какие присвоены величинам, которые обозначаются этими буквами. Комплексные сопротивления или проводимости как элементы схемы имеют условное обозначение в виде прямоугольника (см. рис. 3.1). Точно так же обозначают реактивные сопротивления или проводимости, если хотят отметить, что они могут быть как индуктивными, так и емкостными сопротивлениями или проводимостями.

. Конденсатор (идеальная емкость)

Аналогичный характер имеют процессы и для идеальной емкости. Здесь . Поэтому из (3) вытекает, что. Таким образом, в катушке индуктивности и конденсаторе активная мощность не потребляется (Р=0), так как в них не происходит необратимого преобразования энергии в другие виды энергии. Здесь происходит только циркуляция энергии: электрическая энергия запасается в магнитном поле катушки или электрическом поле конденсатора на протяжении четверти периода, а на протяжении следующей четверти периода энергия вновь возвращается в сеть. В силу этого катушку индуктивности и конденсатор называют реактивными элементами, а их сопротивления Х L и Х С, в отличие от активного сопротивления R резистора, – реактивными.

Интенсивность обмена энергии принято характеризовать наибольшим значением скорости поступления энергии в магнитное поле катушки или электрическое поле конденсатора, которое называется реактивной мощностью .

В общем случае выражение для реактивной мощности имеет вид:

Она положительна при отстающем токе (индуктивная нагрузка- ) и отрицательна при опережающем токе (емкостная нагрузка-). Единицу мощности в применении к измерению реактивной мощности называютвольт-ампер реактивный (ВАр).

В частности для катушки индуктивности имеем: , так как.

.

Из последнего видно, что реактивная мощность для идеальной катушки индуктивности пропорциональна частоте и максимальному запасу энергии в катушке. Аналогично можно получить для идеального конденсатора:

.

Резистор (идеальное активное сопротивление).

Здесь напряжение и ток (см. рис. 2) совпадают по фазе , поэтому мощностьвсегда положительна, т.е. резистор потребляет активную мощность

25. Активная, реактивная и полная проводимость цепи.

При параллельном соединении элементов R , L , C (рис. 1) полная проводимость равна
(1)

где g = 1/ R – активная проводимость цепи;

b – реактивная проводимость цепи.

Реактивная проводимость цепи при этом определяется выражением
(2)

Ток в цепи определяется выражением

(3)

Ток в активной проводимости совпадает с напряжением по фазе

(4)

Ток в ёмкости определяет напряжение по фазе на 90 0

(5)

Ток в индуктивности отстаёт от напряжения по фазе на 90 0

(6)

Средняя активность мощность, расходуемая в цепи

(7)

Сдвиг фаз между напряжением U на зажимах цепи и током I в ней определяется выражениями

(8)

(9)

26. Переходные процессы в линейных электрических цепях. Основные понятия, законы коммуникации.

При всех изменениях в электрической цепи: включении, выключении, коротком замыкании, колебаниях величины какого-либо параметра и т.п. – в ней возникают переходные процессы, которые не могут протекать мгновенно, так как невозможно мгновенное изменение энергии, запасенной в электромагнитном поле цепи. Таким образом, переходный процесс обусловлен несоответствием величины запасенной энергии в магнитном поле катушки и электрическом поле конденсатора ее значению для нового состояния цепи.При переходных процессах могут возникать большие перенапряжения, сверхтоки, электромагнитные колебания, которые могут нарушить работу устройства вплоть до выхода его из строя. С другой стороны, переходные процессы находят полезное практическое применение, например, в различного рода электронных генераторах. Все это обусловливает необходимость изучения методов анализа нестационарных режимов работы цепи.

Основные методы анализа переходных процессов в линейных цепях:

    Классический метод, заключающийся в непосредственном интегрировании дифференциальных уравнений, описывающих электромагнитное состояние цепи.

    Операторный метод, заключающийся в решении системы алгебраических уравнений относительно изображений искомых переменных с последующим переходом от найденных изображений к оригиналам.

    Частотный метод, основанный на преобразовании Фурье и находящий широкое применение при решении задач синтеза.

    Метод расчета с помощью интеграла Дюамеля, используемый при сложной форме кривой возмущающего воздействия.

    Метод переменных состояния, представляющий собой упорядоченный способ определения электромагнитного состояния цепи на основе решения системы дифференциальных уравнений первого прядка, записанных в нормальной форме (форме Коши).

Законы коммутации

Название закона

Формулировка закона

Первый закон коммутации (закон сохранения потокосцепления)

Магнитный поток, сцепленный с катушками индуктивности контура, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Второй закон коммутации (закон сохранения заряда)

Электрический заряд на конденсаторах, присоединенных к любому узлу, в момент коммутации сохраняет то значение, которое имел до коммутации, и начинает изменяться именно с этого значения: .

Доказать законы коммутации можно от противного: если допустить обратное, то получаются бесконечно большие значения и, что приводит к нарушению законов Кирхгофа.

На практике, за исключением особых случаев (некорректные коммутации), допустимо использование указанных законов в другой формулировке, а именно:

первый закон коммутации – в ветви с катушкой индуктивности ток в момент

.

второй закон коммутации – напряжение на конденсаторе в момент

коммутации сохраняет свое докоммутационное значение и в дальнейшем начинает изменяться с него: .

Необходимо подчеркнуть, что более общей формулировкой законов коммутации является положение о невозможности скачкообразного изменения в момент коммутации для схем с катушкой индуктивности – потокосцеплений, а для схем с конденсаторами – зарядов на них. В качестве иллюстрации сказанному могут служить схемы на рис. 2, переходные процессы в которых относятся к так называемым некорректным коммутациям (название произошло от пренебрежения в подобных схемах малыми параметрами, корректный учет которых может привести к существенному усложнению задачи).

Действительно, при переводе в схеме на рис. 2,а ключа из положения 1 в положение 2 трактование второго закона коммутации как невозможность скачкообразного изменения напряжения на конденсаторе приводит к невыполнению второго закона Кирхгофа . Аналогично при размыкании ключа в схеме на рис. 2,б трактование первого закона коммутации как невозможность скачкообразного изменения тока через катушку индуктивности приводит к невыполнению первого закона Кирхгофа. Для данных схем, исходя из сохранения заряда и соответственно потокосцепления, можно записать:

Зависимыми начальными условиями называются значения остальных токов и напряжений, а также производных от искомой функции в момент коммутации, определяемые по независимым начальным условиям при помощи уравнений, составляемых по законам Кирхгофа для . Необходимое число начальных условий равно числу постоянных интегрирования. Поскольку уравнение вида (2) рационально записывать для переменной, начальное значение которой относится к независимым начальным условиям, задача нахождения начальных условий обычно сводится к нахождению значений этой переменной и ее производных до (n-1) порядка включительно при.

mob_info