Органические вещества алканы. Органическая химия

Углеводороды представляют собой простейшие органические соединения. Их составляют углерод и водород. Соединения этих двух элементов называются предельными углеводородами или алканами. Их состав выражается общей для алканов формулой CnH2n+2, где n - количество атомов углерода.

Вконтакте

Одноклассники

Алканы - международное наименование данных соединений . Также эти соединения называют парафинами и насыщенными углеводородами. Связь в молекулах алканов простая (или одинарная). Остальные валентности насыщены атомами водорода. Все алканы насыщены водородом до предела, его атомы находятся в состоянии sp3-гибридизации.

Гомологический ряд предельных углеводородов

Первым в гомологическом ряду насыщенных углеводородов стоит метан. Его формула CH4. Окончание -ан в наименовании предельных углеводородов являет отличительным признаком. Далее в соответствии с приведенной формулой в гомологическом ряду располагаются этан - C2H6, пропан C3H8, бутан - C4H10.

С пятого алкана в гомологическом ряду названия соединений образуются следующим образом: греческое число, указывающее число атомов углеводорода в молекуле + окончание -ан. Так, по-гречески число 5 - пэндэ, соответственно за бутаном идет пентан - C5H12. Далее - гексан C6H14. гептан - C7H16, октан - C8H18, нонан - C9H20, декан - C10H22 и т. д.

Физические свойства алканов заметно изменяются в гомологическом ряду: увеличивается температура плавления, кипения, увеличивается плотность. Метан, этан, пропан, бутан при обычных условиях, т. е. при температуре равной примерно 22 градуса тепла по Цельсию, являются газами, с пентана по гексадекан включительно - жидкостями, с гептадекана - твердыми веществами. Начиная с бутана, у алканов есть изомеры.

Существуют таблицы, отражающие изменения в гомологическом ряду алканов , которые наглядно отражают их физические свойства.

Номенклатура насыщенных углеводородов, их производные

Если происходит отрыв атома водорода от молекулы углеводорода, то образуются одновалентные частицы, которые называют радикалами (R). Название радикалу дает то углеводород, из которого этот радикал произведен, при этом окончание -ан меняется на окончание -ил. Например, из метана при отрыве атома водорода образуется радикал метил, из этана - этил, из пропана - пропил и т. д.

Радикалы также образуются и неорганическими соединениям. Например, отняв у азотной кислоты гидроксильную группу ОН, можно получить одновалентный радикал -NO2, который называется нитрогруппой.

При отрыве от молекулы алкана двух атомов водорода образуется двухвалентные радикалы, названия которых также образуются из названия соответствующих углеводородов, но окончание меняется на:

  • илиен, в том случае, если атомы водорода оторваны от одного атома углерода,
  • илен, в том случае, если от двух атомы водорода оторваны от двух соседних атомов углерода.

Алканы: химические свойства

Рассмотрим реакции, характерные для алканов. Всем алканам присущи общие химические свойства. Данные вещества являются малоактивными.

Все известные реакции с участием углеводородов подразделяются на два вида:

  • разрыв связи С-Н (примером может служить реакция замещения);
  • разрыв связи С-С (крекинг, образование отдельных частей).

Очень активны в момент образования радикалы. Сами по себе они существуют доли секунды. Радикалы легко вступают в реакции между собой. Их неспаренные электроны образуют новую ковалентную связь. Пример: CH3 + CH3 → C2H6

Радикалы легко вступают в реакции с молекулами органических веществ. Они либо присоединяются к ним, либо отрывают от них атом с неспаренным электроном, в результате чего появляются новые радикалы, которые, в свою очередь, могут вступать в реакции с другими молекулами. При такой цепной реакции получаются макромолекулы, которые перестают расти только тогда, когда оборвется цепь (пример: соединение двух радикалов)

Реакции свободных радикалов объясняют многие важные химические процессы, такие как:

  • Взрывы;
  • Окисления;
  • Крекинг нефти;
  • Полимеризацию непредельных соединений.

Подробно можно рассмотреть химические свойства насыщенных углеводородов на примере метана. Выше мы уже рассматривали строение молекулы алкана. Атомы углерода находятся в молекуле метана в состоянии sp3-гибридизации, и образуется достаточно прочная связь. Метан представляет собой газ баз запаха и цвета. Он легче воздуха. В воде малорастворим.

Алканы могут гореть. Горит метан синеватым бледным пламенем. При этом результатом реакции будут оксид углерода и вода. При смешивании с воздухом, а также в смеси с кислородом, особенно если соотношение объемов будет 1:2, данные углеводород образует взрывчатые смеси, из-за чего он крайне опасен для применения в быту и шахтах. Если метан сгорает не полностью, то образуется сажа. В промышленности ее таким образом и получают.

Из метана получают формальдегид и метиловый спирт путем его окисления в присутствии катализаторов. Если же метан сильно нагреть, то он распадается по формуле CH4 → C + 2H2

Распад метана можно осуществить до промежуточного продукта в специально оборудованных печах. Промежуточным продуктом будет ацетилен. Формула реакции 2CH4 → C2H2 + 3H2. Выделение ацетилена из метана сокращает расходы производства почти в два раза.

Также из метана получают водород, производя конверсию метана с водяным паром. Характерными для метана являются реакции замещения. Так, при обычной температуре, на свету галогены (Cl, Br) по стадиям вытесняют водород из молекулы метана. Таким образом образуются вещества, называемые галогенопроизводными. Атомы хлора , замещая в молекуле углеводорода атомы водорода, образуют смесь разных соединений.

В такой смеси присутствуют хлорметан (CH3 Cl или хлористый метил), дихлорметан (CH2Cl2или хлористый метилен), трихлорметан (CHCl3 или хлороформ), тетрахлорметан (CCl4 или четыреххлористый углерод).

Любое из этих соединений может быть выделено из смеси. В производстве важное значение отводится хлороформу и тетрахлорметану, в силу того, что они являются растворителями органических соединений (жиров, смол, каучука). Галогенопроизводные метана образуются по цепному свободнорадикальному механизму.

Свет воздействует на молекулы хлора, вследствие чего они распадаются на неорганические радикалы, которые отрывают атом водорода с одним электроном от молекулы метана. При этом образуется HCl и метил. Метил реагирует с молекулой хлора, в результате чего получается галогенопроизводное и радикал хлора. Далее радикал хлора продолжает цепную реакцию.

При обычной температуре метан обладает достаточной стойкостью к щелочам, кислотам, многим окислителям. Исключение - азотная кислота. В реакции с ней образуется нитрометан и вода.

Реакции присоединения для метана не характерны, т. к. все валентности в его молекуле насыщены.

Реакции, в которых участвуют углеводороды могут проходить не только с расщеплением связи С-Н, но и с разрывом связи С-С. Такие превращения происходят при наличии высоких температур и катализаторов. К таким реакциям относятся дегидрогенизация и крекинг.

Из насыщенных углеводородов путем окисления получают кислоты - уксусную (из бутана), жирные кислоты (из парафина).

Получение метана

В природе метан распространен достаточно широко. Он - главная составная часть большинства горючих природных и искусственных газов. Он выделяется из каменноугольных пластов в рудниках, со дна болот. Природные газы (что очень заметно в попутных газах нефтяных месторождений) содержат не только метан, но и другие алканы. Применение этих веществ разнообразно. Они используются как топливо, на различных производствах, в медицине и технике.

В условиях лаборатории данный газ выделяют при нагревании смеси ацетат натрия + гидроксид натрия, а также реакцией карбида алюминия и воды. Также метан получают из простых веществ. Для этого обязательными условиями являются нагрев и катализатор. Промышленное значение имеет получение метана синтезом на основе водяного пара.

Метан и его гомологи могут быть получены при прокаливании солей соответствующих органических кислот с щелочами. Еще одним способом получения алканов является реакция Вюрца, при которой нагреваются моногалогенопроизводные с металлическим натрием.

Алканы являются насыщенными углеводородами и содержат максимально возможное число атомов водорода. Простейшим представителем класса является метан (CH 4).


По номенклатуре ИЮПАК названия алкано в образуются при помощи суффикса -ан путём добавления к соответствующему корню от названия углеводорода. Выбирается наиболее длинная неразветвлённая углеводородная цепь так, чтобы у наибольшего числа заместителей был минимальный номер в цепи. В названии соединения цифрой указывают номер углеродного атома, при котором находится замещающая группа или гетероатом, затем название группы или гетероатома и название главной цепи.


Для алканов характерен тип гибридизации - sp 3 .


Пространственное строение - у метана тетраэдрическая форма молекулы, у алканов n>4 - зигзагообразная форма.


Изомерия предельных углеводородов обусловлена простейшим видом структурной изомерии - изомерией углеродного скелета. Гомологическая разница - -CH 2 -.

Физические свойства

Температуры плавления и кипения увеличиваются с молекулярной массой и длиной главной углеродной цепи. При нормальных условиях неразветвлённые алканы с CH 4 до C 4 H 10 - газы; с C 5 H 12 до C 13 H 28 - жидкости; после C 14 H 30 - твёрдые тела. Температуры плавления и кипения понижаются от менее разветвленных к более разветвленным. Газообразные алканы горят бесцветным или бледно-голубым пламенем с выделением большого количества тепла.

Химические свойства алканов

1. Реакции замещения.

Галогенирование - это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование алканов проходит поэтапно - за один этап замещается не более одного атома водорода:


CH 4 + Cl 2 → CH 3 Cl + HCl (хлорметан)
CH 3 Cl + Cl 2 → CH 2 Cl 2 + HCl (дихлорметан)
CH 2 Cl 2 + Cl 2 → CHCl 3 + HCl (трихлорметан)
CHCl 3 + Cl 2 → CCl 4 + HCl (тетрахлорметан).

Нитрование алканов (реакция Коновалова)

На алканы действует pазбавленная азотная кислота пpи нагpевании и давлении. В pезультате пpоисходит замещение атома водоpода на остаток азотной кислоты – нитpогpуппу NO 2 .


R- H + HO -NO 2 → R-NO 2 + H 2 O


Эту pеакцию называют pеакцией нитpования, а пpодукты pеакции – нитpосоединениями.

2. Горение.

Основным химическим свойством предельных углеводородов, определяющих их использование в качестве топлива, является реакция горения. Пример:


CH 4 + 2O 2 → CO 2 + 2H 2 O + Q


Значение Q достигает 46 000 - 50 000 кДж/кг.


В случае нехватки кислорода вместо углекислого газа получается угарный газ или уголь (в зависимости от концентрации кислорода).
В общем виде реакцию горения алканов можно записать следующим образом:


С n Н 2n+2 + (1,5n+0,5)O 2 → nCO 2 + (n+1)H 2 O

3. Крекинг алканов.

Реакции разложения происходят лишь под влиянием больших температур. Повышение температуры приводит к разрыву углеродной связи и образованию свободных радикалов.



CH 4 → C + 2H 2 (t > 1000 °C)


C 2 H 6 → 2C + 3H 2


Крекинг – процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью.


Термический крекинг. При температуре 450–700 o С алканы распадаются за счет разрыва связей С–С (более прочные связи С-Н при такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов.


Например:


C 6 H 14 → C 2 H 6 + C 4 H 8


Каталитический крекинг проводят в присутствии катализаторов (обычно оксидов алюминия и кремния) при температуре450°С и атмосферном давлении. При этом наряду с разрывом молекул происходят реакции изомеризации и дегидрирования:


2CH 4 1500 ° C → H–C≡C–H (ацетилен) + 3H 2

4. Изомеризация.

Под влиянием катализаторов при нагревании углеводороды нормального строения подвергаются изомеризации - перестройке углеродного скелета с образованием алканов разветвленного строения.


CH 3 –CH 2 –CH 2 –CH 2 –CH 3 (пентан) –t°,AlCl 3 → CH 3 –CH 2 –CH 2 –CH 3 I


CH 3 (2-метилбутан)

5. Дегидрирование алканов

При нагревании алканов в присутствии катализаторов происходит их каталитическое дегидрирование за счет разрыва связей С-Н и отщепления атомов водорода от соседних углеродных атомов. При этом алкан превращается в алкен с тем же числом углеродных атомов в молекуле:


C n H 2n+2 → C n H 2n + H 2


CH 3 -CH 3 → CH 2 =CH 2 + H 2 (этан → этен)


CH 3 -CH 2 -CH 2 -CH 3 → CH 2 = CH-CH 2 -CH 3 + H 2 (бутан → бутен-1 )


Наряду с бутеном-1 в этой реакции образуется также бутен-2.

6. Реакции окисления алканов

Алканы - соединения с низкими степенями окисления углерода, и в зависимости от условий реакции они могут окисляться с образованием различных соединений.

Получение алканов

Алканы выделяют из природных источников (природный и попутный газы, нефть, каменныйуголь). Используются также синтетические методы.


1. Крекинг нефти (промышленный способ)


При крекинге алканы получаются вместе с непредельными соединениями (алкенами). Этот способ важен тем, что при разрыве молекул высших алканов получается очень ценное сырье для органического синтеза: пропан, бутан, изобутан, изопентан идр.


2. Гидpиpование непpедельных углеводоpодов:


C n H 2n + H2 →C n H 2n+2 ← -H2 C n H 2n-2


алкены → алканы ← алкины

3. Газификация твердого топлива (при повышенной температуре и давлении, катализатор Ni):


С + 2Н 2 → СН 4


4. Из синтез-газа (СО + Н 2) получают смесь алканов:


nСО + (2n+1)Н 2 → C n H 2n+ 2 + nH 2 O


5. Синтез более сложных алканов из галогенопpоизводных с меньшим числом атомов углеpода:


2CH 3 Cl + 2Na → CH 3 -CH 3 + 2NaCl (реакция Вюрца)


6. Из солей карбоновых кислот:


а) сплавление со щелочью (реакция Дюма


CH 3 COONa + NaOH → CH 4 + Na 2 CO 3

ацетат натрия


б) электролиз по Кольбе


2RCOONa + 2H 2 O → R-R + 2CO 2 + H 2 + 2NaOH

на аноде → на катоде


7. Разложение карбидов металлов (метанидов) водой:


Al 4 C 3 + 12HOH → 4Al(OH) 3 + 3CH 4

Применение алканов.

Предельные углеводороды находят широкое применение в самых разнообразных сферах жизни и деятельности человека.


Газообразные алканы (метан и пpопан-бутановая смесь) используются в качестве ценного топлива.


Жидкие углеводоpоды составляют значительную долю в моторных и ракетных топливах и используются в качестве растворителей.


Вазелиновое масло (смесь жидких углеводоpодов с числом атомов углерода до 15) - пpозpачная жидкость без запаха и вкуса, используется в медицине, паpфюмеpии и косметике.


Вазелин (смесь жидких и твеpдых пpедельных углеводоpодов с числом углеpодных атомов до 25) пpименяется для пpиготовления мазей, используемых в медицине.


Паpафин (смесь твеpдых алканов С 19 - С 35) - белая твеpдая масса без запаха и вкуса (t пл = 50-70°C) - пpименяется для изготовления свечей, пpопитки спичек и упаковочной бумаги, для тепловых пpоцедуp в медицине и т.д.


Нормальные предельные углеводороды средней молекулярной массы используются как питательный субстрат в микробиологическом синтезе белка из нефти.


Большое значение имеют галогенопроизводные алканов, которые используются как растворители, хладоагенты и сырье для дальнейших синтезов.


В современной нефтехимической промышленности предельные улеводороды являются базой для получения разнообразных органических соединений, важным сырьем в процессах получения полупродуктов для производства пластмасс, каучуков, синтетических волокон, моющих средств и многих других веществ.

Углеводороды, в молекулах которых атомы связаны одинарными связями и которые соответствуют общей формуле C n H 2 n +2 .
В молекулах алканов все атомы углерода находятся в состоянии sр 3 -гибридизации. Это означает, что все четыре гибридные орбитали атома углерода одинаковы по форме, энергии и направлены в углы равносторонней треугольной пирамиды - тетраэдра. Углы между орбиталями равны 109° 28′.

Вокруг одинарной углерод-углеродной связи возможно практически свободное вращение, и молекулы алканов могут приобретать самую разнообразную форму с углами при атомах углерода, близкими к тетраэдрическому (109° 28′), например, в молекуле н -пентана.

Особо стоит напомнить о связях в молекулах алканов. Все связи в молекулах предельных углеводородов одинарные. Перекрывание происходит по оси,
соединяющей ядра атомов, т. е. это σ-связи. Связи углерод - углерод являются неполярными и плохо поляризуемыми. Длина С-С связи в алканах равна 0,154 нм (1,54 10 — 10 м). Связи С-Н несколько короче. Электронная плотность немного смещена в сторону более электроотрицательного атома углерода, т. е. связь С-Н является слабополярной.

Отсутствие в молекулах предельных углеводородов полярных связей приводит к тому, что они плохо растворяются в воде, не вступают во взаимодействие с заряженными частицами (ионами). Наиболее характерными для алканов являются реакции, протекающие с участием свободных радикалов.

Гомологический ряд метана

Гомологи - вещества, сходные по строению и свойствам и отличающиеся на одну или более групп СН 2 .

Изомерия и номенклатура

Для алканов характерна так называемая структурная изомерия. Структурные изомеры отличаются друг от друга строением углеродного скелета. Простейший алкан, для которого характерны структурные изомеры, - это бутан.

Основы номенклатуры

1. Выбор главной цепи. Формирование названия углеводорода начинается с определения главной цепи - самой длинной цепочки атомов углерода в молекуле, которая является как бы ее основой.
2. Нумерация атомов главной цепи. Атомам главной цепи присваивают номера. Нумерация атомов главной цепи начинается с того конца, к которому ближе стоит заместитель (структуры А, Б). Если заместители находятся на равном удалении от конца цепи, то нумерация начинается от того конца, при котором их больше (структура В). Если различные заместители находятся на равном удалении от концов цепи, то нумерация начинается с того конца, к которому ближе старший (структура Г). Старшинство углеводородных заместителей определяется по тому, в каком порядке следует в алфавите буква, с которой начинается их название: метил (-СН 3), затем этил (-СН 2 -СН 3), пропил (-СН 2 -СН 2 -СН 3) и т. д.
Обратите внимание на то, что название заместителя формируется заменой суффикса -ан на суффикс —ил в названии соответствующего алкана.
3. Формирование названия . В начале названия указывают цифры - номера атомов углерода, при которых находятся заместители. Если при данном атоме находятся несколько заместителей, то соответствующий номер в названии повторяется дважды через запятую (2,2-). После номера через дефис указывают количество заместителей (ди - два, три - три, тетра - четыре, пента - пять) и название заместителя (метил, этил, пропил). Затем без пробелов и дефисов - название главной цепи. Главная цепь называется как углеводород - член гомологического ряда метана (метан СН 4 , этан С 2 Н 6 , пропан C 3 H 8 , С 4 Н 10, пентан С 5 Н 12 , гексан С 6 Н 14 , гептан C 7 H 16, октан C 8 H 18, нонан С 9 Н 20, декан С 10 Н 22).

Физические свойства алканов

Первые четыре представителя гомологического ряда метана - газы. Простейший из них - метан - газ без цвета, вкуса и запаха (запах «газа», почувствовав который, надо звонить 04, определяется запахом меркаптанов - серосодержащих соединений, специально добавляемых к метану, используемому в бытовых и промышленных газовых приборах для того, чтобы люди, находящиеся рядом с ними, могли по запаху определить утечку).
Углеводороды состава от С 4 Н 12 до С 15 Н 32 - жидкости; более тяжелые углеводороды - твердые вещества. Температуры кипения и плавления алканов постепенно увеличиваются с возрастанием длины углеродной цепи. Все углеводороды плохо растворяются в воде, жидкие углеводороды являются распространенными органическими растворителями.

Химические свойства алканов

Реакции замещения.
Наиболее характерными для алканов являются реакции свободнорадикального замещения, в ходе которого атом водорода замещается на атом галогена или какую-либо группу. Приведем уравнения характерных реакций галогенирования:


В случае избытка галогена хлорирование может пойти дальше, вплоть до полного замещения всех атомов водорода на хлор:

Полученные вещества широко используются как растворители и исходные вещества в органических синтезах.
Реакция дегидрирования (отщепления водорода) .
В ходе пропускания алканов над катализатором (Pt, Ni, А1 2 0 3 , Сг 2 0 3) при высокой температуре (400-600 °С) происходит отщепление молекулы водорода и образование алкена:


Реакции, сопровождающиеся разрушением углеродной цепи.
Все предельные углеводороды горят с образованием углекислого газа и воды. Газообразные углеводороды, смешанные с воздухом в определенных соотношениях, могут взрываться.
1. Горение предельных углеводородов - это свободнорадикальная экзотермическая реакция, которая имеет очень большое значение при использовании алканов в качестве топлива:

В общем виде реакцию горения алканов можно записать следующим образом:

2. Термическое расщепление углеводородов.

Процесс протекает по свободнорадикальному механизму. Повышение температуры приводит к гомолитическому разрыву углерод-углеродной связи и образованию свободных радикалов.

Эти радикалы взаимодействуют между собой, обмениваясь атомом водорода, с образованием молекулы алкана и молекулы алкена:

Реакции термического расщепления лежат в основе промышленного процесса - крекинга углеводородов. Этот процесс является важнейшей стадией переработки нефти.

3. Пиролиз . При нагревании метана до температуры 1000 °С начинается пиролиз метана - разложение на простые вещества:

При нагревании до температуры 1500 °С возможно образование ацетилена:

4. Изомеризация . При нагревании линейных углеводородов с катализатором изомеризации (хлоридом алюминия) происходит образование веществ с разветвленным углеродным скелетом:

5. Ароматизация . Алканы с шестью или более углеродными атомами в цепи в присутствии катализатора циклизуются с образованием бензола и его производных:

Алканы вступают в реакции, протекающие по свободнорадикальному механизму, т. к. все атомы углерода в молекулах алканов находятся в состоянии sp 3 -гибридизации. Молекулы этих веществ построены при помощи ковалентных неполярных С-С (углерод - углерод) связей и слабополярных С-Н (углерод - водород) связей. В них нет участков с повышенной и с пониженной электронной плотностью, легко поляризуемых связей, т. е. таких связей, электронная плотность в которых может смещаться под действием внешних факторов (электростатических полей ионов). Следовательно, алканы не будут реагировать с заряженными частицами, т. к. связи в молекулах алканов не разрываются по гетеролитическому механизму.

УГЛЕВОДОРОДЫ. АЛКАНЫ

1. Классификация углеводородов.

2. Алканы.

3. Гомологический ряд, номенклатура, получение.

4. Изомерия, строение.

5. Свойства.

Углеводороды - органические соединения, состоящие из атомов двух элементов - углерода и водорода. Поэтому общую формулу углеводородов можно представить в виде С х Н y .

Классификацию органических веществ, рассмотренную ранее, можно распространить и на углеводороды. Изучение углеводородов начинается с класса ациклических предельных соединений - алканов.

КЛАССИФИКАЦИЯ УГЛЕВОДОРОДОВ

УГЛЕВОДОРОДЫ

Алифатические

Циклические

Предельные

Непредельные

Ароматические

Алициклические

Алканы Алкены Циклоалканы Арены

Алкадиены

АЛКАНЫ

Алканы (парафины) - насыщенные или предельные углеводороды с открытой углеродной цепьюи общей формулой – С n H 2n+2 .

Гомологический ряд:

метан - СН 4

этан - СН 3 -СН 3

пропан - СН 3 -СН 2 -СН 3

бутан - СН 3 -СН 2 -СН 2 -СН 3

пентан - СН 3 -СН 2 -СН 2 -СН 2 -СН 3 и т. д.

Номенклатура. Названия нормальных алканов, за исключением четырех членов ряда (метан, этан, пропан, бутан) образованы от греческих и латинских числительных с добавлением суффикса -ан. Разветвленные углеводороды называют по номенклатуре ИЮПАК.

Общая формула радикалов С n H 2n+1 . Названия радикалов образуют, заменяя суффикс «ан» в названии соответствующего алкана на суффикс «ил». Например, СН 4 – метан, радикал СН 3 – метил. Подробно материал по этому разделу представлен в . При наличии в алкане или алкильном радикале фрагмента СН 3 -СН(СН 3)- к его названию добавляют префикс изо, фрагмента СН 3 -С(СН 3) 2 - префикс нео, например,

СН 3 -СН(СН 3)-СН 3 - изобутан, СН 3 -С(СН 3) 2 -СН 3 - неопентан.

По рациональной номенклатуре алканам дают названия как производным метана, полученным в результате замещения одного или нескольких атомов водорода на алкильные радикалы. Например, пропан СН 3 -СН 2 -СН 3 по рациональной номенклатуре будет иметь название - диметилметан.

Нахождение и применение алканов в природе. Алканы широко распространены в природе, являются главными компонентами нефти, природного газа, попутного нефтяного газа, горючих сланцев, природных восков, озокерита.

Основные области применения алканов указываются при рассмотрении свойств этих соединений.

Получение алканов.

1. Промышленные способы получения:

а) переработка различными методами природных источников (перегонка и крекинг нефти, риформинг, пиролиз);

б) гидрирование ненасыщенных углеводородов:

в) синтез Фишера-Тропша:

2. Лабораторные способы получения:

а) реакция Вюрца:

2RHal + 2Na → R-R + 2NaHal

б) декарбоксилирование солей карбоновых кислот:

В) электролиз солей карбоновых кислот (синтез Кольбе):

2RCOONa + 2H 2 O → R-R + 2CO 2 + 2NaOH + H 2

г) восстановление галогеналканов, карбонильных соединений:

RHal + H 2 → R-H + HHal

Изомерия алканов.

1. Структурная изомерия

Для алканов, начиная с бутана, существуют структурные изомеры, отличающиеся строением углеродной цепи. Например, молекулярной формуле С 4 Н 10 соответствует два соединения -

СН 3 -СН 2 -СН 2 -СН 3 нормальный бутан и СН 3 -СН(СН 3)-СН 3 изобутан (2-метилпропан).

Число изомеров возрастает с увеличением числа атомов углерода в составе молекулы.

Таблица 4.

Количество структурных изомеров алканов

Атомы углерода в молекулах алканов подразделяются на первичные, вторичные, третичные, четвертичные в зависимости от числа соседних С-атомов.

2. Конформационная изомерия

Этот вид изомерии характерен для углеводородов с числом атомов углерода два и более. Например, молекула этана существует в виде двух пространственных конформационных изомеров заслоненной и заторможенной конформаций:

1. заслоненная конформация этана; 2. заторможенная конформация этана.

Молекулы с длинными углеродными цепями существуют, в основном, в форме зигзагообразных конформаций. При этом близко оказываются атомы 1-5 или 1-6, что способствует циклизации углеводородной цепи.

3. Оптическая изомерия

Молекулы разветвленных алканов (С 7 и более) могут быть хиральными с одним или несколькими асимметрическими атомами углерода. Например:

СН 3 - СН 2 – *СН – СН 2 – СН 2 – СН 3 3-метилгексан

Это соединение существует в виде двух оптических изомеров - энантиомеров (R, S-конфигурации).

Строение алканов.

Согласно теории гибридизации для атомов углерода в предельных углеводородах характерна sp 3 -гибридизация. Поэтому в соединениях данного типа существуют только ковалентные σ-связи: С-С (sp 3 -sp 3 - перекрывание) и С-Н(sp 3 -s - перекрывание).

Ковалентные связи в алканах мало поляризуемые, неполярные. Дипольные моменты молекул предельных соединений равны нулю. В связи с этим межмолекулярные взаимодействия очень слабые, что и предопределяет физические свойства алканов.

Для σ-связей С-Н и С-С характерна высокая прочность (Е С-С - 347 кДж/моль; Е С-Н - 415 кДж/моль), которая зависит от типа атомов углерода. Наименее прочными является связи у третичного атома углерода, что делает такие связи наиболее уязвимыми в химических превращениях.

Пространственное строение алканов обусловлено тетраэдрической конфигурацией атомов углерода (валентный угол – 109 0 28 /).

Физические свойства.

Поскольку межмолекулярные взаимодействия в алканах очень слабые, для них характерны низкие температуры кипения и плавления, низкая плотность (меньше воды). В гомологическом ряду физические константы углеводородов закономерно увеличиваются. Разветвления углеродной цепи понижают значения указанных характеристик. Алканы практически нерастворимы в воде, однако легко растворяются в мало полярных и неполярных органических растворителях. Жидкие углеводороды имеют «бензиновый» запах.

Химические свойства.

Алканы обладают низкой реакционной способностью (парафины - «низкое сродство»). Их превращения осуществляются в жестких условиях. Причем гомолитический разрыв связей требует значительно меньших энергетических затрат, чем гетеролитический разрыв, поэтому для алканов характерны радикальные реакции (замещение атомов водорода, расщепление углеродного скелета, окисление). Однако в полярных средах могут происходить гетеролитические реакции. В обычных условиях алканы устойчивы к действию концентрированных кислот и щелочей, окислителей, щелочных металлов.

Алканами в химии называют предельные углеводороды, у которых углеродная цепь является незамкнутой и состоит из углерода, связанных друг с другом при помощи одинарных связей. Также характерной особенностью алканов есть то, что они совсем не содержат двойных либо тройных связей. Порой алканы называют парафинами, дело в том, что парафины собственно и являются смесью предельных углеродов, то есть алканов.

Формула алканов

Формулу алкана можно записать как:

При этом n больше или равно 1.

Алканам свойственна изомерия углеродного скелета. При этом соединения могут принимать разные геометрические формы, как например это показано на картинке ниже.

Изомерия углеродного скелета алканов

С увеличением роста углеродной цепи увеличивается и количество изомеров. Так, например, у бутана есть два изомера.

Получение алканов

Алкан как правило получают различными синтетическими методами. Скажем, один из способов получения алкана предполагает реакцию «гидрирования», когда алканы добываются из ненасыщенных углеводов под воздействием катализатора и при температуре.

Физические свойства алканов

Алканы от других веществ отличаются полным отсутствием цвета, также они не растворим в воде. Температура плавления алканов повышается с увеличением их молекулярной массы и длины углеводородной цепи. То есть чем более разветвленным является алкан, тем у него большая температура горения и плавления. Газообразные алканы и вовсе горят бледно-голубым или бесцветным пламенем, при этом выделяя много тепла.

Химические свойства алканов

Алканы в химическом плане малоактивные вещества, по причине прочности крепких сигма связей С-С и С-Н. При этом связи С-С неполярны, а С-Н малополярны. А так как все это малополяризируемые виды связей, которые относятся к сигма виду, то разрываться они будут по механизму гомолитическому, в результате чего образуются радикалы. И как следствия химические свойства алканов представляют собой в основном реакции радикального замещения.

Так выглядит формула радикального замещения алканов (галогенирование алканов).

Помимо этого также можно выделить такие химические реакции как нитрирование алканов (реакция Коновалова).

Реакция эта протекает при температуре 140 С, причем лучше всего именно с третичным атомом углерода.

Крекинг алканов – эта реакция протекает при действии высоких температур и катализаторов. Тогда создаются условия, когда высшие алканы могут рвать свои связи образуя алканы более низкого порядка.

mob_info